Datasheet MCP6441, MCP6442, MCP6444 (Microchip) - 7

HerstellerMicrochip
BeschreibungThe MCP6441 device is a single nanopower operational amplifier (op amp), which has low quiescent current (450 nA, typical) and rail-to-rail input and output operation
Seiten / Seite46 / 7 — MCP6441/2/4. Note:. 600. 130. 550. B 120. 500. VDD = 6.0V. in 110. rren. …
Dateiformat / GrößePDF / 2.3 Mb
DokumentenspracheEnglisch

MCP6441/2/4. Note:. 600. 130. 550. B 120. 500. VDD = 6.0V. in 110. rren. 450. lifie. p 100. t C. 400. A/ 350. iesc. DD = 1.4V. 300. RL = 10 kΩ

MCP6441/2/4 Note: 600 130 550 B 120 500 VDD = 6.0V in 110 rren 450 lifie p 100 t C 400 A/ 350 iesc DD = 1.4V 300 RL = 10 kΩ

Modelllinie für dieses Datenblatt

Textversion des Dokuments

MCP6441/2/4 Note:
Unless otherwise indicated, T ≈ A = +25°C, VDD = +1.4V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2, VL = VDD/2, RL = 1 MΩ to VL and CL = 60 pF.
600 130 ) 550 B 120 d t ( 500 VDD = 6.0V in 110 rren r) a u 450 G lifie p 100 t C p o 400 o en Am 90 -L A/ 350 n iesc e V p 80 u (n DD = 1.4V 300 RL = 10 kΩ Q 70 VSS + 0.1V < VOUT < VDD - 0.1V 250 DC O 60 200 0 5 0 5 5 0 5 0 5 -50 -25 0 25 50 75 100 125 1. 1. 2. 2. 3.0 3. 4. 4. 5. 5. 6.0 Ambient Temperature (°C) Power Supply Voltage (V) FIGURE 2-13:
Quiescent Current vs.
FIGURE 2-16:
DC Open-Loop Gain vs. Ambient Temperature. Power Supply Voltage.
700 130 600 ) V = 6.0V DD t B 120 en 500 rr in (d 110 u ier) if a 400 t C pl 100 V = 1.4V DD en m op G 300 o sc /A A T 90 A = +125°C ie (n 200 TA = +85°C Qu T pen-L 80 A = +25°C O Large Si Si l gna A O 100 T OL A = -40°C 70 DC R = 10k
:
L 0 0 5 0 5 0 5 0 5 0 5 60 0. 0. 1. 1. 2. 2. 3. 3. 4. 4. 5.0 5.5 6.0 6.5 7.0 0.00 0.05 0.10 0.15 0.20 0.25 Power Supply Voltage (V) FIGURE 2-14:
Quiescent Current vs.
FIGURE 2-17:
DC Open-Loop Gain vs. Power Supply Voltage. Output Voltage Headroom.
120 0 18 90 Open-Loop Gain Phase Margin 100 16 80 ) -30 ) ct B u d 14 70 ) (d 80 -60 se (° ro a 12 60 ain Open-Loop Phase h P in 60 -90 h z) 10 50 arg p G p P idt H o w 40 -120 o (k 8 40 -Loo -L and se M 6 Gain Bandwidth Product 30 a en 20 -150 en B h p p P in 4 20 O O 0 V -180 Ga VDD = 6.0V DD = 6.0V 2 10 -20 -210 0 0 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03 1.0E+04 1.0E+05 1m 10m 0.1 1 10 100 1k 10k 100k -50 -25 0 25 50 75 100 125 Frequency (Hz) Ambient Temperature (°C) FIGURE 2-15:
Open-Loop Gain, Phase vs.
FIGURE 2-18:
Gain Bandwidth Product, Frequency. Phase Margin vs. Ambient Temperature. © 2010-2012 Microchip Technology Inc. DS22257C-page 7 Document Outline 1.0 Electrical Characteristics 2.0 Typical Performance Curves FIGURE 2-1: Input Offset Voltage. FIGURE 2-2: Input Offset Voltage Drift. FIGURE 2-3: Input Offset Voltage vs. Common Mode Input Voltage with VDD = 6.0V. FIGURE 2-4: Input Offset Voltage vs. Common Mode Input Voltage with VDD = 1.4V. FIGURE 2-5: Input Offset Voltage vs. Output Voltage. FIGURE 2-6: Input Offset Voltage vs. Power Supply Voltage. FIGURE 2-7: Input Noise Voltage Density vs. Frequency. FIGURE 2-8: Input Noise Voltage Density vs. Common Mode Input Voltage. FIGURE 2-9: CMRR, PSRR vs. Frequency. FIGURE 2-10: CMRR, PSRR vs. Ambient Temperature. FIGURE 2-11: Input Bias, Offset Current vs. Ambient Temperature. FIGURE 2-12: Input Bias Current vs. Common Mode Input Voltage. FIGURE 2-13: Quiescent Current vs. Ambient Temperature. FIGURE 2-14: Quiescent Current vs. Power Supply Voltage. FIGURE 2-15: Open-Loop Gain, Phase vs. Frequency. FIGURE 2-16: DC Open-Loop Gain vs. Power Supply Voltage. FIGURE 2-17: DC Open-Loop Gain vs. Output Voltage Headroom. FIGURE 2-18: Gain Bandwidth Product, Phase Margin vs. Ambient Temperature. FIGURE 2-19: Gain Bandwidth Product, Phase Margin vs. Ambient Temperature. FIGURE 2-20: Output Short Circuit Current vs. Power Supply Voltage. FIGURE 2-21: Output Voltage Swing vs. Frequency. FIGURE 2-22: Output Voltage Headroom vs. Output Current. FIGURE 2-23: Output Voltage Headroom vs. Ambient Temperature. FIGURE 2-24: Slew Rate vs. Ambient Temperature. FIGURE 2-25: Small Signal Non-Inverting Pulse Response. FIGURE 2-26: Small Signal Inverting Pulse Response. FIGURE 2-27: Large Signal Non-Inverting Pulse Response. FIGURE 2-28: Large Signal Inverting Pulse Response. FIGURE 2-29: The MCP6441/2/4 Device Shows No Phase Reversal. FIGURE 2-30: Closed Loop Output Impedance vs. Frequency. FIGURE 2-31: Measured Input Current vs. Input Voltage (below VSS). FIGURE 2-32: Channel-to-Channel Separation vs. Frequency (MCP6442/4 only). 3.0 Pin Descriptions TABLE 3-1: Pin Function Table 4.0 Application Information FIGURE 4-1: Simplified Analog Input ESD Structures. FIGURE 4-2: Protecting the Analog Inputs. FIGURE 4-3: Protecting the Analog Inputs. FIGURE 4-4: Output Resistor, RISO Stabilizes Large Capacitive Loads. FIGURE 4-5: Recommended RISO Values for Capacitive Loads. FIGURE 4-6: Example Guard Ring Layout for Inverting Gain. FIGURE 4-7: Battery Current Sensing. FIGURE 4-8: Precision Half-Wave Rectifier. FIGURE 4-9: Two Op Amp Instrumentation Amplifier. 5.0 Design Aids 6.0 Packaging Information 6.1 Package Marking Information Appendix A: Revision History Product Identification System Trademarks Worldwide Sales and Service