Datasheet MCP6V61, MCP6V61U, MCP6V62, MCP6V64 (Microchip) - 7

HerstellerMicrochip
BeschreibungThe MCP6V6x family of operational amplifiers provides input offset voltage correction for very low offset and offset drift
Seiten / Seite46 / 7 — MCP6V61/1U/2/4. 2.0. TYPICAL PERFORMANCE CURVES. Note:. 2.1. DC Input …
Dateiformat / GrößePDF / 1.9 Mb
DokumentenspracheEnglisch

MCP6V61/1U/2/4. 2.0. TYPICAL PERFORMANCE CURVES. Note:. 2.1. DC Input Precision. 50%. 28 Samples. Representative Part. 45%. = V. T = 25ºC. CML

MCP6V61/1U/2/4 2.0 TYPICAL PERFORMANCE CURVES Note: 2.1 DC Input Precision 50% 28 Samples Representative Part 45% = V T = 25ºC CML

Modelllinie für dieses Datenblatt

Textversion des Dokuments

MCP6V61/1U/2/4 2.0 TYPICAL PERFORMANCE CURVES Note:
The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note:
Unless otherwise indicated, TA = +25°C, VDD = +1.8V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2, VL = VDD/2, RL = 20 kΩ to VL and CL = 30 pF.
2.1 DC Input Precision 50% 8 28 Samples Representative Part 45% V = V T = 25ºC 6 CM CML A 40% V = 5.5V 4 DD (µV) 35% 2 Occurences 30% ltage V = 1.8V o 25% DD 0 20% -2 15% -4 T = -40°C 10% A T = +25°C Percentage of Input Offset V A -6 5% T = +85°C A T = +125°C A 0% -8 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 Input Offset Voltage (µV) Power Supply Voltage (V) FIGURE 2-1:
Input Offset Voltage.
FIGURE 2-4:
Input Offset Voltage vs. Power Supply Voltage with VCM = VCML.
60% 8 28 Samples Representative Part T = -40°C to +125°C 6 V = V CM CMH 50% A T = -40°C A (µV) 4 T = +25°C A T = +85°C 40% A V = 5.5V DD 2 T = +125°C ltage A o 30% V = 1.8V DD 0 -2 20% -4 10% Input Offset V -6 Percentage of Occurrences 0% -8 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 Input Offset Voltage Drift; TC (nV/°C) 1 Power Supply Voltage (V) FIGURE 2-2:
Input Offset Voltage Drift.
FIGURE 2-5:
Input Offset Voltage vs. Power Supply Voltage with VCM = VCMH.
8 45% Representative Part 28 Samples 40% V = 1.8V T = -40°C to +125°C 6 DD A 35% (µV) 4 30% 2 25% V DD = 5.5V ltage o 20% 0 V = 1.8V 15% DD -2 10% -4 T = - 40°C A 5% T = +25°C A Percentage of Occurrences Input Offset V T = +85°C 0% -6 A T = +125°C A -80 -60 -40 -20 0 20 40 60 80 -8 Input Offset Voltage Quadratric Temp Co; 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 TC (pV/°C2) 2 Output Voltage (V) FIGURE 2-3:
Input Offset Voltage
FIGURE 2-6:
Input Offset Voltage vs. Quadratic Temp. Co. Output Voltage with VDD = 1.8V.  2014-2015 Microchip Technology Inc. DS20005367B-page 7 Document Outline Features Typical Applications Design Aids Related Parts General Description Package Types Typical Application Circuit FIGURE 1: Input Offset Voltage vs. Ambient Temperature with VDD = 1.8V. FIGURE 2: Input Offset Voltage vs. Ambient Temperature with VDD = 5.5V. 1.0 Electrical Characteristics 1.1 Absolute Maximum Ratings † 1.2 Specifications TABLE 1-1: DC Electrical Specifications TABLE 1-2: AC Electrical Specifications TABLE 1-3: Temperature Specifications 1.3 Timing Diagrams FIGURE 1-1: Amplifier Start-Up. FIGURE 1-2: Offset Correction Settling Time. FIGURE 1-3: Output Overdrive Recovery. 1.4 Test Circuits FIGURE 1-4: AC and DC Test Circuit for Most Non-Inverting Gain Conditions. FIGURE 1-5: AC and DC Test Circuit for Most Inverting Gain Conditions. FIGURE 1-6: Test Circuit for Dynamic Input Behavior. 2.0 Typical Performance Curves 2.1 DC Input Precision FIGURE 2-1: Input Offset Voltage. FIGURE 2-2: Input Offset Voltage Drift. FIGURE 2-3: Input Offset Voltage Quadratic Temp. Co. FIGURE 2-4: Input Offset Voltage vs. Power Supply Voltage with VCM = VCML. FIGURE 2-5: Input Offset Voltage vs. Power Supply Voltage with VCM = VCMH. FIGURE 2-6: Input Offset Voltage vs. Output Voltage with VDD = 1.8V. FIGURE 2-7: Input Offset Voltage vs. Output Voltage with VDD = 5.5V. FIGURE 2-8: Input Offset Voltage vs. Common Mode Voltage with VDD = 1.8V. FIGURE 2-9: Input Offset Voltage vs. Common Mode Voltage with VDD = 5.5V. FIGURE 2-10: Common Mode Rejection Ratio. FIGURE 2-11: Power Supply Rejection Ratio. FIGURE 2-12: DC Open-Loop Gain. FIGURE 2-13: CMRR and PSRR vs. Ambient Temperature. FIGURE 2-14: DC Open-Loop Gain vs. Ambient Temperature. FIGURE 2-15: Input Bias and Offset Currents vs. Common Mode Input Voltage with TA = +85°C. FIGURE 2-16: Input Bias and Offset Currents vs. Common Mode Input Voltage with TA = +125°C. FIGURE 2-17: Input Bias and Offset Currents vs. Ambient Temperature with VDD = 5.5V. FIGURE 2-18: Input Bias Current vs. Input Voltage (Below VSS). 2.2 Other DC Voltages and Currents FIGURE 2-19: Input Common Mode Voltage Headroom (Range) vs. Ambient Temperature. FIGURE 2-20: Output Voltage Headroom vs. Output Current. FIGURE 2-21: Output Voltage Headroom vs. Ambient Temperature. FIGURE 2-22: Output Short Circuit Current vs. Power Supply Voltage. FIGURE 2-23: Supply Current vs. Power Supply Voltage. FIGURE 2-24: Power-On Reset Trip Voltage. FIGURE 2-25: Power-On Reset Voltage vs. Ambient Temperature. 2.3 Frequency Response FIGURE 2-26: CMRR and PSRR vs. Frequency. FIGURE 2-27: Open-Loop Gain vs. Frequency with VDD = 1.8V. FIGURE 2-28: Open-Loop Gain vs. Frequency with VDD = 5.5V. FIGURE 2-29: Gain Bandwidth Product and Phase Margin vs. Ambient Temperature. FIGURE 2-30: Gain Bandwidth Product and Phase Margin vs. Common Mode Input Voltage. FIGURE 2-31: Gain Bandwidth Product and Phase Margin vs. Output Voltage. FIGURE 2-32: Closed-Loop Output Impedance vs. Frequency with VDD = 1.8V. FIGURE 2-33: Closed-Loop Output Impedance vs. Frequency with VDD = 5.5V. FIGURE 2-34: Maximum Output Voltage Swing vs. Frequency. FIGURE 2-35: EMIRR vs. Frequency. FIGURE 2-36: EMIRR vs. Input Voltage. FIGURE 2-37: Channel-to-Channel Separation vs. Frequency. 2.4 Input Noise and Distortion FIGURE 2-38: Input Noise Voltage Density and Integrated Input Noise Voltage vs. Frequency. FIGURE 2-39: Input Noise Voltage Density vs. Input Common Mode Voltage. FIGURE 2-40: Intermodulation Distortion vs. Frequency with VCM Disturbance (see Figure 1-6). FIGURE 2-41: Inter-Modulation Distortion vs. Frequency with VDD Disturbance (see Figure 1-6). FIGURE 2-42: Input Noise vs. Time with 1 Hz and 10 Hz Filters and VDD = 1.8V. FIGURE 2-43: Input Noise vs. Time with 1 Hz and 10 Hz Filters and VDD = 5.5V. 2.5 Time Response FIGURE 2-44: Input Offset Voltage vs. Time with Temperature Change. FIGURE 2-45: Input Offset Voltage vs. Time at Power-Up. FIGURE 2-46: The MCP6V61/1U/2/4 Family Shows No Input Phase Reversal with Overdrive. FIGURE 2-47: Non-Inverting Small Signal Step Response. FIGURE 2-48: Non-Inverting Large Signal Step Response. FIGURE 2-49: Inverting Small Signal Step Response. FIGURE 2-50: Inverting Large Signal Step Response. FIGURE 2-51: Slew Rate vs. Ambient Temperature. FIGURE 2-52: Output Overdrive Recovery vs. Time with G = -10 V/V. FIGURE 2-53: Output Overdrive Recovery Time vs. Inverting Gain. 3.0 Pin Descriptions TABLE 3-1: Pin Function Table 3.1 Analog Outputs 3.2 Analog Inputs 3.3 Power Supply Pins 3.4 Exposed Thermal Pad (EP) 4.0 Applications 4.1 Overview of Zero-Drift Operation FIGURE 4-1: Simplified Zero-Drift Op Amp Functional Diagram. 4.1.1 Building Blocks 4.1.2 Chopping Action FIGURE 4-2: First Chopping Clock Phase; Equivalent Amplifier Diagram. FIGURE 4-3: Second Chopping Clock Phase; Equivalent Amplifier Diagram. 4.1.3 Intermodulation Distortion (IMD) 4.2 Other Functional Blocks 4.2.1 Rail-to-Rail Inputs FIGURE 4-4: Simplified Analog Input ESD Structures. FIGURE 4-5: Protecting the Analog Inputs Against High Voltages. FIGURE 4-6: Protecting the Analog Inputs Against High Currents. 4.2.2 Rail-to-Rail Output 4.3 Application Tips 4.3.1 Input Offset Voltage Over Temperature 4.3.2 DC Gain Plots 4.3.3 Offset at Power-Up 4.3.4 Source Resistances 4.3.5 Source Capacitance 4.3.6 Capacitive Loads FIGURE 4-7: Output Resistor, RISO, Stabilizes Capacitive Loads. FIGURE 4-8: Recommended RISO values for Capacitive Loads. 4.3.7 Stabilizing Output Loads FIGURE 4-9: Output Load. 4.3.8 Gain Peaking FIGURE 4-10: Amplifier with Parasitic Capacitance. 4.3.9 Reducing Undesired Noise and Signals 4.3.10 Supply Bypassing and Filtering 4.3.11 PCB Design for DC Precision 4.4 Typical Applications 4.4.1 Wheatstone Bridge FIGURE 4-11: Simple Design. 4.4.2 RTD Sensor FIGURE 4-12: RTD Sensor. 4.4.3 Offset Voltage Correction FIGURE 4-13: Offset Correction. 4.4.4 Precision Comparator FIGURE 4-14: Precision Comparator. 5.0 Design Aids 5.1 SPICE Macro Model 5.2 FilterLab® Software 5.3 Microchip Advanced Part Selector (MAPS) 5.4 Analog Demonstration and Evaluation Boards 5.5 Application Notes 6.0 Packaging Information 6.1 Package Marking Information 80 µA, 1 MHz Zero-Drift Op Amps Appendix A: Revision History Revision B (September 2015) Revision A (December 2014) Product Identification System AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Worldwide Sales and Service