MCP1700 DC CHARACTERISTICS (CONTINUED) Electrical Characteristics: Unless otherwise specified, all limits are established for VIN = VR + 1V, ILOAD = 100 µA, COUT = 1 µF (X7R), CIN = 1 µF (X7R), TA = +25°C. Boldface type applies for junction temperatures, TJ (Note 6) of -40°C to +125°C. Parameters Output Noise Power Supply Ripple Rejection Ratio Thermal Shutdown Protection Note 1: 2: 3: 4: 5: 6: 7: Sym. Min. Typ. Max. Units Conditions IL = 100 mA, f = 1 kHz, COUT = 1 µF eN — 3 — µV/(Hz)1/2 PSRR — 44 — dB f = 100 Hz, COUT = 1 µF, IL = 50 mA, VINAC = 100 mV pk-pk, CIN = 0 µF, VR = 1.2V TSD — 140 — °C VIN = VR + 1V, IL = 100 µA The minimum VIN must meet two conditions: VIN 2.3V and VIN VR + 3.0% VDROPOUT. VR is the nominal regulator output voltage. For example: VR = 1.2V, 1.5V, 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 4.0V, 5.0V. The input voltage VIN = VR + 1.0V; IOUT = 100 µA. TCVOUT = (VOUT-HIGH -VOUT-LOW) *106 / (VR * Temperature), VOUT-HIGH = highest voltage measured over the temperature range. VOUT-LOW = lowest voltage measured over the temperature range. Load regulation is measured at a constant junction temperature using low duty cycle pulse testing. Changes in output voltage due to heating effects are determined using thermal regulation specification TCVOUT. Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its measured value with a VR + 1V differential applied. The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability. The junction temperature is approximated by soaking the device under test at an ambient temperature equal to the desired Junction temperature. The test time is small enough such that the rise in the Junction temperature over the ambient temperature is not significant. TEMPERATURE SPECIFICATIONS Electrical Characteristics: Unless otherwise specified, all limits are established for VIN = VR + 1V, ILOAD = 100 µA, COUT = 1 µF (X7R), CIN = 1 µF (X7R), TA = +25°C. Boldface type applies for junction temperatures, TJ (Note 1) of -40°C to +125°C. Parameters Sym. Min. Typ. Max. Units Conditions Temperature Ranges Specified Temperature Range TA -40 +125 °C Operating Temperature Range TJ -40 +125 °C Storage Temperature Range TA -65 +150 °C JA — — °C/W JC — 19 — °C/W JA — 336 — °C/W JC — 110 — °C/W Thermal Package Resistance Thermal Resistance, 2x2 DFN Thermal Resistance, SOT-23 Thermal Resistance, SOT-89 Thermal Resistance, TO-92 Note 1: 91 JA — 180 — °C/W JC — 52 — °C/W JA — 160 — °C/W JC — 66.3 — °C/W EIA/JEDEC® JESD51-7 FR-4 0.063 4-Layer Board EIA/JEDEC JESD51-7 FR-4 0.063 4-Layer Board EIA/JEDEC JESD51-7 FR-4 0.063 4-Layer Board The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum 150°C rating. Sustained junction temperatures above 150°C can impact the device reliability. DS20001826D-page 4 2005-2016 Microchip Technology Inc.