Datasheet MCP4706, MCP4716, MCP4726 (Microchip) - 8
Hersteller | Microchip |
Beschreibung | 8-/10-/12-Bit Voltage Output Digital-to-Analog Converter with EEPROM and I2C Interface |
Seiten / Seite | 86 / 8 — MCP4706/4716/4726. FIGURE 1-3:. TABLE 1-2:. I2C BUS START/STOP BITS … |
Dateiformat / Größe | PDF / 16.8 Mb |
Dokumentensprache | Englisch |
MCP4706/4716/4726. FIGURE 1-3:. TABLE 1-2:. I2C BUS START/STOP BITS REQUIREMENTS. I2C™ AC Characteristics
Modelllinie für dieses Datenblatt
Textversion des Dokuments
link to page 4
MCP4706/4716/4726
VIH SCL 91 93 90 92 111 SDA VIL Start Stop Condition Condition
FIGURE 1-3:
I2C Bus Start/Stop Bits Timing Waveforms.
TABLE 1-2: I2C BUS START/STOP BITS REQUIREMENTS I2C™ AC Characteristics Standard Operating Conditions (unless otherwise specified)
Operating Temperature -40°C ≤ TA ≤ +125°C (Extended) Operating Voltage VDD range is described in
Electrical Characteristics Param. Symbol Characteristic Min Max Units Conditions No.
FSCL SCL pin Frequency Standard mode 0 100 kHz Cb = 400 pF, 2.7V - 5.5V Fast mode 0 400 kHz Cb = 400 pF, 2.7V - 5.5V High-Speed 1.7 0 1.7 MHz Cb = 400 pF, 4.5V - 5.5V High-Speed 3.4 0 3.4 MHz Cb = 100 pF, 4.5V - 5.5V D102 Cb Bus capacitive 100 kHz mode — 400 pF loading 400 kHz mode — 400 pF 1.7 MHz mode — 400 pF 3.4 MHz mode — 100 pF 90 TSU:STA Start condition 100 kHz mode 4700 — ns Only relevant for repeated Start condition Setup time 400 kHz mode 600 — ns 1.7 MHz mode 160 — ns 3.4 MHz mode 160 — ns 91 THD:STA Start condition 100 kHz mode 4000 — ns After this period, the first clock pulse is generated Hold time 400 kHz mode 600 — ns 1.7 MHz mode 160 — ns 3.4 MHz mode 160 — ns 92 TSU:STO Stop condition 100 kHz mode 4000 — ns Setup time 400 kHz mode 600 — ns 1.7 MHz mode 160 — ns 3.4 MHz mode 160 — ns 93 THD:STO Stop condition 100 kHz mode 4000 — ns Hold time 400 kHz mode 600 — ns 1.7 MHz mode 160 — ns 3.4 MHz mode 160 — ns 94 THVCSU HVC to SCL Setup time 25 — uS High Voltage Commands 95 THVCHD SCL to HVC Hold time 25 — uS High Voltage Commands DS22272C-page 8 © 2011-2012 Microchip Technology Inc. Document Outline 1.0 Electrical Characteristics 1.1 I2C Mode Timing Waveforms and Requirements FIGURE 1-1: Power-On and Brown-Out Reset Waveforms. FIGURE 1-2: I2C Power-Down Command Timing. TABLE 1-1: RESET Timing FIGURE 1-3: I2C Bus Start/Stop Bits Timing Waveforms. TABLE 1-2: I2C Bus Start/Stop Bits Requirements FIGURE 1-4: I2C Bus Data Timing. TABLE 1-3: I2C Bus Data Requirements (Slave Mode) 2.0 Typical Performance Curves FIGURE 2-1: INL vs. Code (code = 100 to 4000) and Temperature (MCP4726). VDD = 5V, VREF1:VREF0 = 00. FIGURE 2-2: INL vs. Code (code = 25 to 1000) and Temperature (MCP4716). VDD = 5V, VREF1:VREF0 = 00. FIGURE 2-3: INL vs. Code (code = 6 to 250) and Temperature (MCP4706). VDD = 5V, VREF1:VREF0 = 00. FIGURE 2-4: INL vs. Code (code = 100 to 4000) and Temperature (MCP4726). VDD = 2.7V, VREF1:VREF0 = 00. FIGURE 2-5: INL vs. Code (code = 25 to 1000) and Temperature (MCP4716). VDD = 2.7V, VREF1:VREF0 = 00. FIGURE 2-6: INL vs. Code (code = 6 to 250) and Temperature (MCP4706). VDD = 2.7V, VREF1:VREF0 = 00. FIGURE 2-7: DNL vs. Code (code = 100 to 4000) and Temperature (MCP4726). VDD = 5V, VREF1:VREF0 = 00. FIGURE 2-8: DNL vs. Code (code = 25 to 1000) and Temperature (MCP4716). VDD = 5V, VREF1:VREF0 = 00. FIGURE 2-9: DNL vs. Code (code = 6 to 250) and Temperature (MCP4706). VDD = 5V, VREF1:VREF0 = 00. FIGURE 2-10: DNL vs. Code (code = 100 to 4000) and Temperature (MCP4726). VDD = 2.7V, VREF1:VREF0 = 00. FIGURE 2-11: DNL vs. Code (code = 25 to 1000) and Temperature (MCP4716). VDD = 2.7V, VREF1:VREF0 = 00. FIGURE 2-12: DNL vs. Code (code = 6 to 250) and Temperature (MCP4706). VDD = 2.7V, VREF1:VREF0 = 00. FIGURE 2-13: Zero-Scale Error (ZSE) vs. VDD and Temperature (MCP4726). VREF1:VREF0 = 00. FIGURE 2-14: Zero-Scale Error (ZSE) vs. VDD and Temperature (MCP4716). VREF1:VREF0 = 00. FIGURE 2-15: Zero-Scale Error (ZSE) vs. VDD and Temperature (MCP4706). VREF1:VREF0 = 00. FIGURE 2-16: Full-Scale Error (FSE) vs. VDD and Temperature (MCP4726). VREF1:VREF0 = 00. FIGURE 2-17: Full-Scale Error (FSE) vs. VDD and Temperature (MCP4716). VREF1:VREF0 = 00. FIGURE 2-18: Full-Scale Error (FSE) vs. VDD and Temperature (MCP4706). VREF1:VREF0 = 00. FIGURE 2-19: INL vs. Code (code = 100 to 4000) and Temperature (MCP4726). VDD = 5V, VREF1:VREF0 = 10, G = 0, VREF = VDD. FIGURE 2-20: INL vs. Code (code = 25 to 1000) and Temperature (MCP4716). VDD = 5V, VREF1:VREF0 = 10, G = 0, VREF = VDD. FIGURE 2-21: INL vs. Code (code = 6 to 250) and Temperature (MCP4706). VDD = 5V, VREF1:VREF0 = 10, G = 0, VREF = VDD. FIGURE 2-22: INL vs. Code (code = 100 to 4000) and Temperature (MCP4726). VDD = 2.7V, VREF1:VREF0 = 10, G = 0, VREF = VDD. FIGURE 2-23: INL vs. Code (code = 25 to 1000) and Temperature (MCP4716). VDD = 2.7V, VREF1:VREF0 = 10, G = 0, VREF = VDD. FIGURE 2-24: INL vs. Code (code = 6 to 250) and Temperature (MCP4706). VDD = 2.7V, VREF1:VREF0 = 10, G = 0, VREF = VDD. FIGURE 2-25: DNL vs. Code (code = 100 to 4000) and Temperature (MCP4726). VDD = 5V, VREF1:VREF0 = 10, G = 0, VREF = VDD. FIGURE 2-26: DNL vs. Code (code = 25 to 1000) and Temperature (MCP4716). VDD = 5V, VREF1:VREF0 = 10, G = 0, VREF = VDD. FIGURE 2-27: DNL vs. Code (code = 6 to 250) and Temperature (MCP4706). VDD = 5V, VREF1:VREF0 = 10, G = 0, VREF = VDD. FIGURE 2-28: DNL vs. Code (code = 100 to 4000) and Temperature (MCP4726). VDD = 2.7V, VREF1:VREF0 = 10, G = 0, VREF = VDD. FIGURE 2-29: DNL vs. Code (code = 25 to 1000) and Temperature (MCP4716). VDD = 2.7V, VREF1:VREF0 = 10, G = 0, VREF = VDD. FIGURE 2-30: DNL vs. Code (code = 6 to 250) and Temperature (MCP4706). VDD = 2.7V, VREF1:VREF0 = 10, G = 0, VREF = VDD. FIGURE 2-31: Zero-Scale Error (ZSE) vs. Temperature (MCP4726). VDD = 5V, VREF1:VREF0 = 10, G = 0, VREF = VDD. FIGURE 2-32: Zero-Scale Error (ZSE) vs. Temperature (MCP4716). VDD = 5V, VREF1:VREF0 = 10, G = 0, VREF = VDD. FIGURE 2-33: Zero-Scale Error (ZSE) vs. Temperature (MCP4706). VDD = 5V, VREF1:VREF0 = 10, G = 0, VREF = VDD. FIGURE 2-34: Full-Scale Error (FSE) vs. Temperature (MCP4726). VDD = 2.7V, VREF1:VREF0 = 10, G = 0, VREF = VDD. FIGURE 2-35: Full-Scale Error (FSE) vs. Temperature (MCP4716). VDD = 2.7V, VREF1:VREF0 = 10, G = 0, VREF = VDD. FIGURE 2-36: Full-Scale Error (FSE) vs. Temperature (MCP4706). VDD = 2.7V, VREF1:VREF0 = 10, G = 0, VREF = VDD. FIGURE 2-37: INL vs. Code (code = 100 to 4000) and Temperature (MCP4726). VDD = 5V, VREF1:VREF0 = 11, G = 0, VREF = VDD. FIGURE 2-38: INL vs. Code (code = 25 to 1000) and Temperature (MCP4716). VDD = 5V, VREF1:VREF0 = 11, G = 0, VREF = VDD. FIGURE 2-39: INL vs. Code (code = 6 to 250) and Temperature (MCP4706). VDD = 5V, VREF1:VREF0 = 11, G = 0, VREF = VDD. FIGURE 2-40: INL vs. Code (code = 100 to 4000) and Temperature (MCP4726). VDD = 2.7V, VREF1:VREF0 = 11, G = 0, VREF = VDD. FIGURE 2-41: INL vs. Code (code = 25 to 1000) and Temperature (MCP4716). VDD = 2.7V, VREF1:VREF0 = 11, G = 0, VREF = VDD. FIGURE 2-42: INL vs. Code (code = 6 to 250) and Temperature (MCP4706). VDD = 2.7V, VREF1:VREF0 = 11, G = 0, VREF = VDD. FIGURE 2-43: DNL vs. Code (code = 100 to 4000) and Temperature (MCP4726). VDD = 5V, VREF1:VREF0 = 11, G = 0, VREF = VDD. FIGURE 2-44: DNL vs. Code (code = 25 to 1000) and Temperature (MCP4716). VDD = 5V, VREF1:VREF0 = 11, G = 0, VREF = VDD. FIGURE 2-45: DNL vs. Code (code = 6 to 250) and Temperature (MCP4706). VDD = 5V, VREF1:VREF0 = 11, G = 0, VREF = VDD. FIGURE 2-46: DNL vs. Code (code = 100 to 4000) and Temperature (MCP4726). VDD = 2.7V, VREF1:VREF0 = 11, G = 0, VREF = VDD. FIGURE 2-47: DNL vs. Code (code = 25 to 1000) and Temperature (MCP4716). VDD = 2.7V, VREF1:VREF0 = 11, G = 0, VREF = VDD. FIGURE 2-48: DNL vs. Code (code = 6 to 250) and Temperature (MCP4706). VDD = 2.7V, VREF1:VREF0 = 11, G = 0, VREF = VDD. FIGURE 2-49: Zero-Scale Error (ZSE) vs. Temperature (MCP4726). VDD = 5V, VREF1:VREF0 = 11, G = 0, VREF = VDD. FIGURE 2-50: Zero-Scale Error (ZSE) vs. Temperature (MCP4716). VDD = 5V, VREF1:VREF0 = 11, G = 0, VREF = VDD. FIGURE 2-51: Zero-Scale Error (ZSE) vs. Temperature (MCP4706). VDD = 5V, VREF1:VREF0 = 11, G = 0, VREF = VDD. FIGURE 2-52: Full-Scale Error (FSE) vs. Temperature (MCP4726). VDD = 2.7V, VREF1:VREF0 = 11, G = 0, VREF = VDD. FIGURE 2-53: Full-Scale Error (FSE) vs. Temperature (MCP4716). VDD = 2.7V, VREF1:VREF0 = 11, G = 0, VREF = VDD. FIGURE 2-54: Full-Scale Error (FSE) vs. Temperature (MCP4706). VDD = 2.7V, VREF1:VREF0 = 11, G = 0, VREF = VDD. FIGURE 2-55: INL vs. Code (code = 100 to 4000) and VDD (2.7V, 5V, 5.5V) (MCP4726). VREF1:VREF0 = 10, G = 1, VREF = VDD/2, Temp = +25°C. FIGURE 2-56: INL vs. Code (code = 25 to 1000) and VDD (2.7V, 5V, 5.5V) (MCP4716). VREF1:VREF0 = 10, G = 1, VREF = VDD/2, Temp = +25°C. FIGURE 2-57: INL vs. Code (code = 6 to 250) and VDD (2.7V, 5V, 5.5V) (MCP4706). VREF1:VREF0 = 10, G = 1, VREF = VDD/2, Temp = +25°C. FIGURE 2-58: DNL vs. Code (code = 100 to 4000) and VDD (2.7V, 5V, 5.5V) (MCP4726). VREF1:VREF0 = 10, G = 1, VREF = VDD/2, Temp = +25°C. FIGURE 2-59: DNL vs. Code (code = 25 to 1000) and VDD (2.7V, 5V, 5.5V) (MCP4716). VREF1:VREF0 = 10, G = 1, VREF = VDD/2, Temp = +25°C. FIGURE 2-60: DNL vs. Code (code = 6 to 250) and VDD (2.7V, 5V, 5.5V) (MCP4706). VREF1:VREF0 = 10, G = 1, VREF = VDD/2, Temp = +25°C. FIGURE 2-61: INL vs. Code (code = 100 to 4000) and VDD (2.7V, 5V, 5.5V) (MCP4726). VREF1:VREF0 = 11, G = 1, VREF = VDD/2, Temp = +25°C. FIGURE 2-62: INL vs. Code (code = 25 to 1000) and VDD (2.7V, 5V, 5.5V) (MCP4716). VREF1:VREF0 = 11, G = 1, VREF = VDD/2, Temp = +25°C. FIGURE 2-63: INL vs. Code (code = 6 to 250) and VDD (2.7V, 5V, 5.5V) (MCP4706). VREF1:VREF0 = 11, G = 1, VREF = VDD/2, Temp = +25°C. FIGURE 2-64: DNL vs. Code (code = 100 to 4000) and VDD (2.7V, 5V, 5.5V) (MCP4726). VREF1:VREF0 = 11, G = 1, VREF = VDD/2, Temp = +25°C. FIGURE 2-65: DNL vs. Code (code = 25 to 1000) and VDD (2.7V, 5V, 5.5V) (MCP4716). VREF1:VREF0 = 11, G = 1, VREF = VDD/2, Temp = +25°C. FIGURE 2-66: DNL vs. Code (code = 6 to 250) and VDD (2.7V, 5V, 5.5V) (MCP4706). VREF1:VREF0 = 11, G = 1, VREF = VDD/2, Temp = +25°C. FIGURE 2-67: INL vs. Code (code = 100 to 4000) and VREF (MCP4726). VDD = 5V, VREF1:VREF0 = 10, G = 0, VREF = 1V, 2V, 3V, 4V, and 5V, Temp = +25°C. FIGURE 2-68: INL vs. Code (code = 25 to 1000) and VREF (MCP4716). VDD = 5V, VREF1:VREF0 = 10, G = 0, VREF = 1V, 2V, 3V, 4V, and 5V, Temp = +25°C. FIGURE 2-69: INL vs. Code (code = 6 to 250) and VREF (MCP4706). VDD = 5V, VREF1:VREF0 = 10, G = 0, VREF = 1V, 2V, 3V, 4V, and 5V, Temp = +25°C. FIGURE 2-70: DNL vs. Code (code = 100 to 4000) and VREF (MCP4726). VDD = 5V, VREF1:VREF0 = 10, G = 0, VREF = 1V, 2V, 3V, 4V, and 5V, Temp = +25°C. FIGURE 2-71: DNL vs. Code (code = 25 to 1000) and VREF (MCP4716). VDD = 5V, VREF1:VREF0 = 10, G = 0, VREF = 1V, 2V, 3V, 4V, and 5V, Temp = +25°C. FIGURE 2-72: DNL vs. Code (code = 6 to 250) and VREF (MCP4706). VDD = 5V, VREF1:VREF0 = 10, G = 0, VREF = 1V, 2V, 3V, 4V, and 5V, Temp = +25°C. FIGURE 2-73: INL vs. Code (code = 100 to 4000) and VREF (MCP4726). VDD = 5V, VREF1:VREF0 = 11, G = 0, VREF = 1V, 2V, 3V, 4V, and 5V, Temp = +25°C. FIGURE 2-74: INL vs. Code (code = 25 to 1000) and VREF (MCP4716). VDD = 5V, VREF1:VREF0 = 11, G = 0, VREF = 1V, 2V, 3V, 4V, and 5V, Temp = +25°C. FIGURE 2-75: INL vs. Code (code = 6 to 250) and VREF (MCP4706). VDD = 5V, VREF1:VREF0 = 11, G = 0, VREF = 1V, 2V, 3V, 4V, and 5V, Temp = +25°C. FIGURE 2-76: DNL vs. Code (code = 100 to 4000) and VREF (MCP4726). VDD = 5V, VREF1:VREF0 = 11, G = 0, VREF = 1V, 2V, 3V, 4V, and 5V, Temp = +25°C. FIGURE 2-77: DNL vs. Code (code = 25 to 1000) and VREF (MCP4716). VDD = 5V, VREF1:VREF0 = 11, G = 0, VREF = 1V, 2V, 3V, 4V, and 5V, Temp = +25°C. FIGURE 2-78: DNL vs. Code (code = 6 to 250) and VREF (MCP4706). VDD = 5V, VREF1:VREF0 = 11, G = 0, VREF = 1V, 2V, 3V, 4V, and 5V, Temp = +25°C. FIGURE 2-79: Output Error vs. Temperature (MCP4726). VDD = 2.7V and 5V, VREF1:VREF0 = 00, Code = 4000. FIGURE 2-80: Output Error vs. Temperature (MCP4716). VDD = 2.7V and 5V, VREF1:VREF0 = 00, Code = 1000. FIGURE 2-81: Output Error vs. Temperature (MCP4706). VDD = 2.7V and 5V, VREF1:VREF0 = 00, Code = 250. FIGURE 2-82: Output Error vs. Temperature (MCP4726). VDD = 2.7V and 5V, VREF1:VREF0 = 10, G = 0, VREF = VDD, Code = 4000. FIGURE 2-83: Output Error vs. Temperature (MCP4716). VDD = 2.7V and 5V, VREF1:VREF0 = 10, G = 0, VREF = VDD, Code = 1000. FIGURE 2-84: Output Error vs. Temperature (MCP4706). VDD = 2.7V and 5V, VREF1:VREF0 = 10, G = 0, VREF = VDD, Code = 250. FIGURE 2-85: Output Error vs. Temperature (MCP4726). VDD = 2.7V and 5V, VREF1:VREF0 = 11, G = 0, VREF = VDD, Code = 4000. FIGURE 2-86: Output Error vs. Temperature (MCP4716). VDD = 2.7V and 5V, VREF1:VREF0 = 11, G = 0, VREF = VDD, Code = 1000. FIGURE 2-87: Output Error vs. Temperature (MCP4706). VDD = 2.7V and 5V, VREF1:VREF0 = 11, G = 0, VREF = VDD, Code = 250. FIGURE 2-88: IDD vs. Temperature. VDD = 2.7V and 5V, VREF1:VREF0 = 00. FIGURE 2-89: IDD vs. Temperature. VDD = 2.7V and 5V, VREF1:VREF0 = 10, G = 0, VREF = VDD. FIGURE 2-90: IDD vs. Temperature. VDD = 2.7V and 5V, VREF1:VREF0 = 11, G = 0, VREF = VDD. FIGURE 2-91: Power-down Current vs. Temperature. VDD = 2.7V, 3.3V, 4.5V, 5.0V and 5.5V, PD1:PD0 = 11. FIGURE 2-92: VIH Threshold of SDA/SCL Inputs vs. Temperature and VDD. FIGURE 2-93: VIL Threshold of SDA/SCL Inputs vs. Temperature and VDD. FIGURE 2-94: VOUT vs. Resistive Load. VDD = 5.0V. FIGURE 2-95: VOUT vs. Source/Sink Current. VDD = 5.0V. FIGURE 2-96: Full-Scale Settling Time (000h to FFFh) (MCP4726). FIGURE 2-97: Full-Scale Settling Time (FFFh to 000h) (MCP4726). FIGURE 2-98: Half-Scale Settling Time (400h to C00h) (MCP4726). FIGURE 2-99: Half-Scale Settling Time (C00h to 400h) (MCP4726). FIGURE 2-100: Exiting Power-Down Mode (MCP4726, Volatile DAC Register = FFFh). 3.0 Pin descriptions TABLE 3-1: MCP47X6 Pinout Description 3.1 Analog Output Voltage Pin (VOUT) 3.2 Positive Power Supply Input (VDD) 3.3 Ground (VSS) 3.4 Serial Data Pin (SDA) 3.5 Serial Clock Pin (SCL) 3.6 Voltage Reference Pin (VREF) 3.7 Exposed Pad (EP) 4.0 General Description 4.1 Power-On Reset/Brown-Out Reset (POR/BOR) FIGURE 4-1: Power-on Reset Operation. 4.2 DAC’s (Resistor Ladder) Reference Voltage FIGURE 4-2: Resistor Ladder Reference Voltage Selection Block Diagram. 4.3 Resistor Ladder FIGURE 4-3: Resistor Ladder. 4.4 Output Buffer/VOUT Operation FIGURE 4-4: Output Buffer Block Diagram. FIGURE 4-5: VOUT pin Slew Rate. FIGURE 4-6: Circuit to Stabilize Output Buffer for Large Capacitive Loads (CL). TABLE 4-1: DAC Input Code Vs. Analog Output (VOUT) (VDD = 5.0V) 4.5 Power-Down Operation TABLE 4-2: Power-down bits and Output resistive load FIGURE 4-7: Op Amp to VOUT Pin Block Diagram. 4.6 Device Resets 4.7 DAC Registers, Configuration Bits, and Status Bits FIGURE 4-8: DAC Memory and POR Interaction. TABLE 4-3: Status Bits Operation TABLE 4-4: Configuration Bits TABLE 4-5: Configuration Bit Values after POR/BOR Event 5.0 I2C Serial Interface 5.1 Overview FIGURE 5-1: Typical I2C Interface. 5.2 Signal Descriptions 5.3 I2C Operation FIGURE 5-2: Start Bit. FIGURE 5-3: Data Bit. FIGURE 5-4: Acknowledge Waveform. TABLE 5-1: MCP47X6 A/A Responses FIGURE 5-5: Repeat Start Condition Waveform. FIGURE 5-6: Stop Condition Receive or Transmit Mode. FIGURE 5-7: Typical 8-Bit I2C Waveform Format. FIGURE 5-8: I2C Data States and Bit Sequence. FIGURE 5-9: Slave Address Bits in the I2C Control Byte. TABLE 5-2: I2C Address/Order Code FIGURE 5-10: HS Mode Sequence. FIGURE 5-11: General Call Formats. 6.0 MCP47X6 I2C Commands TABLE 6-1: I2C Commands - Number of Clocks TABLE 6-2: MCP47X6 Supported Commands 6.1 Write Volatile DAC Register FIGURE 6-1: Write Volatile DAC Register Command. 6.2 Write Volatile Memory FIGURE 6-2: Write Volatile Memory Command. 6.3 Write All Memory FIGURE 6-3: Write All Memory Command. 6.4 Write Volatile Configuration Bits FIGURE 6-4: Write Volatile Configuration Bits Command. 6.5 Read Command FIGURE 6-5: Read Command Format for 12-bit DAC (MCP4726) and 10-bit DAC (MCP4716). FIGURE 6-6: Read Command Format for 8-bit DAC (MCP4706). 6.6 I2C General Call Commands FIGURE 6-7: General Call Reset Command. FIGURE 6-8: General Call Wake-Up Command. 7.0 Terminology 7.1 Resolution 7.2 Least Significant bit (LSb) 7.3 Monotonicity 7.4 Full-Scale Error (FSE) 7.5 Zero-Scale Error (ZSE) 7.6 Offset Error FIGURE 7-1: Offset Error Example. 7.7 Integral Nonlinearity (INL) FIGURE 7-2: INL Accuracy Example. 7.8 Differential Nonlinearity (DNL) FIGURE 7-3: DNL Accuracy Example. 7.9 Gain Error FIGURE 7-4: Gain Error and Full-Scale Error Example. 7.10 Gain Error Drift 7.11 Offset Error Drift 7.12 Settling Time 7.13 Major-Code Transition Glitch 7.14 Digital Feedthrough 7.15 Power-Supply Rejection Ratio (PSRR) 8.0 Typical Applications 8.1 Connecting to I2C BUS using Pull-Up Resistors FIGURE 8-1: I2C Bus Connection Test. 8.2 Power Supply Considerations FIGURE 8-2: Example MCP47X6 Circuit with SOT-23 package. 8.3 Application Examples FIGURE 8-3: Example Circuit Of Set Point or Threshold Calibration. FIGURE 8-4: Single-Supply “Window” DAC. 8.4 Bipolar Operation FIGURE 8-5: Digitally-Controlled Bipolar Voltage Source Example Circuit. 8.5 Selectable Gain and Offset Bipolar Voltage Output FIGURE 8-6: Bipolar Voltage Source with Selectable Gain and Offset. 8.6 Designing a Double-Precision DAC FIGURE 8-7: Simple Double Precision DAC using MCP4726. 8.7 Building Programmable Current Source FIGURE 8-8: Digitally-Controlled Current Source. 8.8 Serial Interface Communication Times TABLE 8-1: Serial Interface Times / Frequencies 8.9 Software I2C Interface Reset Sequence FIGURE 8-9: Software Reset Sequence Format. 8.10 Design Considerations FIGURE 8-10: Typical Microcontroller Connections. TABLE 8-2: Package Footprint (1) 9.0 Development Support 9.1 Development Tools FIGURE 9-1: MCP47X6 PICtail ™Plus Daughter Board with PIC® Explorer 16 Development Board. FIGURE 9-2: MCP47X6 PICtail™ Plus Daughter Board with PICkit™ Serial Analyzer. TABLE 9-1: Development Tools 9.2 Technical Documentation TABLE 9-2: Technical Documentation 10.0 Packaging Information 10.1 Package Marking Information Corporate Office Atlanta Boston Chicago Cleveland Fax: 216-447-0643 Dallas Detroit Indianapolis Toronto Fax: 852-2401-3431 Australia - Sydney China - Beijing China - Shanghai India - Bangalore Korea - Daegu Korea - Seoul Singapore Taiwan - Taipei Fax: 43-7242-2244-393 Denmark - Copenhagen France - Paris Germany - Munich Italy - Milan Spain - Madrid UK - Wokingham Worldwide Sales and Service Appendix A: Revision History Product Identification System Trademarks Worldwide Sales and Service