Datasheet MCP616, MCP617, MCP618, MCP619 (Microchip) - 9 Hersteller Microchip Beschreibung The MCP616 operational amplifier (op amp) has a gain bandwidth product of 190 kHz with a low typical operating current of 19 µA and an offset voltage that is less than 150 µV Seiten / Seite 38 / 9 — MCP616/7/8/9. Note:. 200. 100. 180. GBWP. rre. SC+. 160. DD = 5.5V. 140. … Dateiformat / Größe PDF / 654 Kb Dokumentensprache Englisch
MCP616/7/8/9. Note:. 200. 100. 180. GBWP. rre. SC+. 160. DD = 5.5V. 140. uit C. ) 120. irc. H 100. (mA. ndwidth Produc. ase Marg. | ISC– |. in B
Herunterladen PDF
Textversion des Dokuments MCP616/7/8/9 Note: Unless otherwise indicated, VDD = +2.3V to +5.5V, VSS = GND, TA = 25°C, VCM = VDD/2, VOUT ≈ VDD/2, RL = 100 kΩ to VDD/2 and CL = 60 pF.25 200 100 nt t I 180 90 GBWP rre SC+ u 20 V 160 80 DD = 5.5V °) 140 70 ( uit C in 15 ) 120 60 irc ) z PM H 100 50 (mA (k 10 ndwidth Produc 80 40 a ase Marg 60 30 | ISC– | Ph 5 in B 40 20 V Ga 20 10 Output Short C DD = 2.3V 0 0 0 -50 -25 0 25 50 75 100 -50 -25 0 25 50 75 100 Ambient Temperature (°C) Ambient Temperature (°C) FIGURE 2-13: Output Short Circuit CurrentFIGURE 2-16: Gain Bandwidth Product, vs. Ambient Temperature. Phase Margin vs. Ambient Temperature.0.10 100 0.09 VDD = 5.5V Low-to-High Transition 80 0.08 (µV) 60 ) s e 0.07 g 40 /µ 0.06 (V 20 te High-to-Low Transition 0.05 t Volta 0 a e TA = +85°C R 0.04 -20 w TA = +25°C le 0.03 -40 S T -60 A = -40°C 0.02 Input Offs -80 0.01 VDD = 5.0V -100 0.00 .5 -50 -25 0 25 50 75 100 -0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Ambient Temperature (°C) Common Mode Input Voltage (V) FIGURE 2-14: Slew Rate vs. AmbientFIGURE 2-17: Input Offset Voltage vs. Temperature. Common Mode Input Voltage.30 0.30 50 RL = 25 k 25 ) 0.25 ) 40 20 0.20 30 15 0.15 V nt (nA nt (nA 20 DD = 5.5V 10 0.10 rre T rre 5 10 A = +85°C IOS 0.05 u u 0 T 0 C A = +25°C 0.00 t C VDD = 2.3V s -5 TA = -40°C -0.05 e ia I -10 B -10 -0.10 -20 -15 -0.15 -30 -20 -0.20 Input B Input Offset Voltage (μV) -25 V -40 DD = 5.5V -0.25 Input Offs -30 -0.30 -50 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Common Mode Input Voltage (V) Output Voltage (V) FIGURE 2-15: Input Bias, Offset CurrentsFIGURE 2-18: Input Offset Voltage vs. vs. Common Mode Input Voltage. Output Voltage. © 2008 Microchip Technology Inc. DS21613C-page 9 Document Outline 1.0 Electrical Characteristics FIGURE 1-1: Timing Diagram for the CS Pin on the MCP618. 1.1 Test Circuits FIGURE 1-2: AC and DC Test Circuit for Most Non-Inverting Gain Conditions. FIGURE 1-3: AC and DC Test Circuit for Most Inverting Gain Conditions. 2.0 Typical Performance Curves FIGURE 2-1: Input Offset Voltage at VDD = 5.5V. FIGURE 2-2: Input Offset Voltage at VDD = 2.3V. FIGURE 2-3: Input Bias Current at VDD = 5.5V. FIGURE 2-4: Input Offset Voltage Drift at VDD = 5.5V. FIGURE 2-5: Input Offset Voltage Drift at VDD = 2.3V. FIGURE 2-6: Input Offset Current at VDD = 5.5V. FIGURE 2-7: Input Offset Voltage vs. Ambient Temperature. FIGURE 2-8: Quiescent Current vs. Ambient Temperature. FIGURE 2-9: Maximum Output Voltage Swing vs. Ambient Temperature at RL = 5 kW. FIGURE 2-10: Input Bias, Offset Currents vs. Ambient Temperature. FIGURE 2-11: CMRR, PSRR vs. Ambient Temperature. FIGURE 2-12: Maximum Output Voltage Swing vs. Ambient Temperature at RL = 25 kW. FIGURE 2-13: Output Short Circuit Current vs. Ambient Temperature. FIGURE 2-14: Slew Rate vs. Ambient Temperature. FIGURE 2-15: Input Bias, Offset Currents vs. Common Mode Input Voltage. FIGURE 2-16: Gain Bandwidth Product, Phase Margin vs. Ambient Temperature. FIGURE 2-17: Input Offset Voltage vs. Common Mode Input Voltage. FIGURE 2-18: Input Offset Voltage vs. Output Voltage. FIGURE 2-19: Quiescent Current vs. Power Supply Voltage. FIGURE 2-20: DC Open-Loop Gain vs. Load Resistance. FIGURE 2-21: Gain-Bandwidth Product, Phase Margin vs. Load Resistance. FIGURE 2-22: Output Voltage Headroom vs. Output Current Magnitude. FIGURE 2-23: DC Open-Loop Gain vs. Power Supply Voltage. FIGURE 2-24: Channel-to-Channel Separation vs. Frequency (MCP617 and MCP619 only). FIGURE 2-25: Open-Loop Gain, Phase vs. Frequency. FIGURE 2-26: Input Noise Voltage, Current Densities vs. Frequency. FIGURE 2-27: Small-Signal, Non-Inverting Pulse Response. FIGURE 2-28: CMRR, PSRR vs. Frequency. FIGURE 2-29: Maximum Output Voltage Swing vs. Frequency. FIGURE 2-30: Small-Signal, Inverting Pulse Response. FIGURE 2-31: Large-Signal, Non-Inverting Pulse Response. FIGURE 2-32: Chip Select (CS) to Amplifier Output Response Time (MCP618 only). FIGURE 2-33: The MCP616/7/8/9 Show No Phase Reversal. FIGURE 2-34: Large-Signal, Inverting Pulse Response. FIGURE 2-35: Chip Select (CS) Internal Hysteresis (MCP618 only). FIGURE 2-36: Measured Input Current vs. Input Voltage (below VSS). 3.0 Pin Descriptions TABLE 3-1: Pin Function Table 3.1 Analog Outputs 3.2 Analog Inputs 3.3 Chip Select Digital Input (CS) 3.4 Power Supply Pins (VDD, VSS) 4.0 Applications Information 4.1 Rail-to-Rail Inputs FIGURE 4-1: Simplified Analog Input ESD Structures. FIGURE 4-2: Protecting the Analog Inputs. 4.2 DC Offsets FIGURE 4-3: Example Circuit for Calculating DC Offset. FIGURE 4-4: Equivalent DC Circuit. 4.3 Rail-to-Rail Output 4.4 Capacitive Loads FIGURE 4-5: Output Resistor, RISO stabilizes large capacitive loads. FIGURE 4-6: Recommended RISO Values for Capacitive Loads. 4.5 MCP618 Chip Select (CS) 4.6 Supply Bypass 4.7 Unused Op Amps FIGURE 4-7: Unused Op Amps. 4.8 PCB Surface Leakage FIGURE 4-8: Example Guard Ring Layout for Inverting Gain. 4.9 Application Circuits FIGURE 4-9: High Gain Pre-amplifier. FIGURE 4-10: Two-Op Amp Instrumentation Amplifier. FIGURE 4-11: Three-Op Amp Instrumentation Amplifier. FIGURE 4-12: Precision Gain with Good Load Isolation. 5.0 Design Aids 5.1 SPICE Macro Model 5.2 Mindi™ Circuit Designer & Simulator 5.3 Microchip Advanced Part Selector (MAPS) 5.4 Analog Demonstration and Evaluation Boards 5.5 Application Notes 6.0 Packaging Information 6.1 Package Marking Information