The MCP6L91/1R/2/4 family of operational amplifiers has a 10 MHz Gain Bandwidth Product and a low 850uA per amplifier quiescent current
Seiten / Seite
36 /7 — MCP6L91/1R/2/4. Note:. A 25. oom. /m V. ) 9. adr. /µs 8. t (. e (V. rren …
Dateiformat / Größe
PDF / 1.0 Mb
Dokumentensprache
Englisch
MCP6L91/1R/2/4. Note:. A 25. oom. /m V. ) 9. adr. /µs 8. t (. e (V. rren 15. C 10. f O. lew Rat. S 3. Out. atio o R. 1.E. 10-04. 1.E-03. 1.E-. 10 02. -50. -25. 100. 125
MCP6L91/1R/2/4Note: Unless otherwise indicated, TA = +25°C, VDD = +5.0V, VSS = GND, VCM = VSS, VOUT = VDD/2, VL = VDD/2, RL = 10 kto VL and CL = 60 pF. 3012 V ) V DD = 5.5V DD – VOH 11A 25 IOUT 10oom/m V) 9 Falling Edge adrm/µs 8e20t (H V 7 OL – VSS e (Vutrren 15 -I 6 OUT tpu V u5 DD = 2.4V C 104f Outlew RatpS 3 Rising Edge 2Out5atio o R1to001.E10-040µ1.E-031m1.E-10 02m-50-250255075100125Output Current Magnitude (A)Ambient Temperature (°C)FIGURE 2-13: Ratio of Output Voltage FIGURE 2-16: Slew Rate vs. Ambient Headroom to Output Current vs. Output Current. Temperature. 0.04 G = +1 V/V 10)) VDD = 5.5V 0.03P-P/div(V0.02Ving0.01w VDD = 2.4V e S10.00age (10 m ltltag o-0.01oVt Vut-0.02u ptp u-0.03OutO 0.110k100k1M10M-0.041.E+041.E+051.E+061.E+070.E+002.E-074.E-076.E-078.E-071.E-061.E-061.E-062.E-062.E-062.E-06Time (200 ns/div)Frequency (Hz)FIGURE 2-14: Small Signal, Noninverting FIGURE 2-17: Output Voltage Swing vs. Pulse Response. Frequency. 5.0 G = +1 V/V 4.5 4.0) (V 3.5e 3.0ltag o 2.52.0ut V tp 1.5Ou 1.00.5 0.0 0.E+001.E-062.E-063.E-064.E-065.E-066.E-067.E-068.E-069.E-061.E-05Time (1 µs/div)FIGURE 2-15: Large Signal, Noninverting Pulse Response. 2009-2011 Microchip Technology Inc. DS22141B-page 7 Document Outline 1.0 Electrical Characteristics 1.1 Absolute Maximum Ratings † 1.2 Specifications TABLE 1-1: DC Electrical Specifications TABLE 1-2: AC Electrical Specifications TABLE 1-3: Temperature Specifications 1.3 Test Circuit FIGURE 1-1: AC and DC Test Circuit for Most Specifications. 2.0 Typical Performance Curves FIGURE 2-1: Input Offset Voltage vs. Common Mode Input Voltage at VDD = 2.4V. FIGURE 2-2: Input Offset Voltage vs. Common Mode Input Voltage at VDD = 5.5V. FIGURE 2-3: Input Offset Voltage vs. Output Voltage. FIGURE 2-4: Input Common Mode Range Voltage vs. Ambient Temperature. FIGURE 2-5: CMRR, PSRR vs. Ambient Temperature. FIGURE 2-6: CMRR, PSRR vs. Frequency. FIGURE 2-7: Measured Input Current vs. Input Voltage (below VSS). FIGURE 2-8: Open-Loop Gain, Phase vs. Frequency. FIGURE 2-9: Input Noise Voltage Density vs. Frequency. FIGURE 2-10: The MCP6L91/1R/2/4 Show No Phase Reversal. FIGURE 2-11: Quiescent Current vs. Power Supply Voltage. FIGURE 2-12: Output Short Circuit Current vs. Power Supply Voltage. FIGURE 2-13: Ratio of Output Voltage Headroom to Output Current vs. Output Current. FIGURE 2-14: Small Signal, Noninverting Pulse Response. FIGURE 2-15: Large Signal, Noninverting Pulse Response. FIGURE 2-16: Slew Rate vs. Ambient Temperature. FIGURE 2-17: Output Voltage Swing vs. Frequency. 3.0 Pin Descriptions TABLE 3-1: Pin Function Table 3.1 Analog Outputs 3.2 Analog Inputs 3.3 Power Supply Pins 4.0 Application Information 4.1 Rail-to-Rail Inputs FIGURE 4-1: Protecting the Analog Inputs. 4.2 Rail-to-Rail Output 4.3 Capacitive Loads FIGURE 4-2: Output Resistor, RISO stabilizes large capacitive loads. 4.4 Supply Bypass 4.5 Unused Op Amps FIGURE 4-3: Unused Op Amps. 4.6 PCB Surface Leakage FIGURE 4-4: Example Guard Ring Layout. 4.7 Application Circuit FIGURE 4-5: Chebyshev Filter. 5.0 Design Aids 5.1 SPICE Macro Model 5.2 FilterLab® Software 5.3 Microchip Advanced Part Selector (MAPS) 5.4 Analog Demonstration and Evaluation Boards 5.5 Application Notes 6.0 Packaging Information 6.1 Package Marking Information Appendix A: Revision History Product ID System Trademarks Worldwide Sales