Datasheet MCP6L1, MCP6L1R, MCP6L2, MCP6L4 (Microchip) - 5

HerstellerMicrochip
BeschreibungMCP6L1 operational amplifier (op amp) has a gain bandwidth product of 2.8 MHz with low typical operating current of 200uA and an offset voltage that is 1 mV (typ)
Seiten / Seite36 / 5 — MCP6L1/1R/2/4. 2.0. TYPICAL PERFORMANCE CURVES. Note:. 3.0. 0.0. 1.6. ) …
Dateiformat / GrößePDF / 1.5 Mb
DokumentenspracheEnglisch

MCP6L1/1R/2/4. 2.0. TYPICAL PERFORMANCE CURVES. Note:. 3.0. 0.0. 1.6. ) 2.5. -0.1. 1.5. (mV 1.5. ang. 1.0. (V -0.2. 1.4. lta 0.5. e R. t V. -0.3. 1.3. -0.5. – V

MCP6L1/1R/2/4 2.0 TYPICAL PERFORMANCE CURVES Note: 3.0 0.0 1.6 ) 2.5 -0.1 1.5 (mV 1.5 ang 1.0 (V -0.2 1.4 lta 0.5 e R t V -0.3 1.3 -0.5 – V

Modelllinie für dieses Datenblatt

Textversion des Dokuments

MCP6L1/1R/2/4 2.0 TYPICAL PERFORMANCE CURVES Note:
The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note:
Unless otherwise indicated, TA = +25°C, VDD = 5.0V, VSS = GND, VCM = VSS, VOUT = VDD/2, VL = VDD/2, RL = 10 kto VL and CL = 60 pF.
3.0 0.0 1.6 ) 2.5
Representative Part One Wafer Lot V
2.0
DD = 2.7V
e; -0.1 1.5 e; (mV 1.5
-40°C
e ) ) g
+25°C
ang ang 1.0
+85°C
(V -0.2 1.4 (V lta 0.5 e R e R o
+125°
SS RH V 0.0 CM t V
C
-0.3 1.3 e -0.5 RL – V ffs -1.0 on Mod on Mod CM -0.4 1.2 DD O -1.5 V
VDD – VCMRH
V mm
VCMRL – VSS
mm -2.0 o -0.5 o C 1.1 C Input -2.5 -3.0 -0.6 1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -50 -25 0 25 50 75 100 125 Common Mode Input Voltage (V) Ambient Temperature (°C) FIGURE 2-1:
Input Offset Voltage vs.
FIGURE 2-4:
Input Common-Mode Range Common-Mode Input Voltage at VDD = 2.7V. Voltage vs. Ambient Temperature.
3.0 100 ) 2.5
Representative Part CMRR (VCMRL to VCMRH)
V
V
µ 2.0
DD = 5.5V
( 95 e 1.5
-40°C
B)
+25°C
1.0 (d 90 ltag
+85°C
o 0.5
PSRR (V +125°
RR
CM = VSS)
0.0 t V
C
S 85 e -0.5 P ffs -1.0 RR, 80 O -1.5 -2.0 CM 75 Input -2.5 -3.0 70 .5 0 5 0 5 0 5 0 5 0 5 0 5 -0 0. 0. 1. 1. 2. 2. 3. 3. 4. 4. 5. 5. -50 -25 0 25 50 75 100 125 Common Mode Input Voltage (V) Ambient Temperature (°C) FIGURE 2-2:
Input Offset Voltage vs.
FIGURE 2-5:
CMRR, PSRR vs. Ambient Common-Mode Input Voltage at VDD = 5.5V. Temperature.
3.0 100 2.5
Representative Part
) V 2.0 90 (m 1.5 ) 80 B 1.0 age d
PSRR+
lt 0.5 70 o
PSRR–
0.0 RR (
VDD = 5.5V
60 et V -0.5
CMRR
ffs -1.0 50
VDD = 2.7V
RR, PS t O -1.5 40 -2.0 CM Inpu -2.5 30 -3.0 20 -50 -25 0 25 50 75 100 125 1.E+ 100 1.E+01 10 1.E+02 100 1.E+03 1k 1.E+ 10 04 k 1.E 1 +05 00k Ambient Temperature (°C) Frequency (Hz) FIGURE 2-3:
Input Offset Voltage vs.
FIGURE 2-6:
CMRR, PSRR vs. Ambient Temperature. Frequency.  2009-2012 Microchip Technology Inc. DS22135C-page 5 Document Outline MCP6L1/1R/2/4 - 2.8 MHz, 200 μA Op Amps 1.0 Electrical Characteristics 1.1 Absolute Maximum Ratings † 1.2 Specifications TABLE 1-1: DC Electrical Specifications TABLE 1-2: AC Electrical Specifications TABLE 1-3: Temperature Specifications 1.3 Test Circuit FIGURE 1-1: AC and DC Test Circuit for Most Specifications. 2.0 Typical Performance Curves FIGURE 2-1: Input Offset Voltage vs. Common-Mode Input Voltage at VDD = 2.7V. FIGURE 2-2: Input Offset Voltage vs. Common-Mode Input Voltage at VDD = 5.5V. FIGURE 2-3: Input Offset Voltage vs. Ambient Temperature. FIGURE 2-4: Input Common-Mode Range Voltage vs. Ambient Temperature. FIGURE 2-5: CMRR, PSRR vs. Ambient Temperature. FIGURE 2-6: CMRR, PSRR vs. Frequency. FIGURE 2-7: Measured Input Current vs. Input Voltage (below VSS). FIGURE 2-8: Open-Loop Gain, Phase vs. Frequency. FIGURE 2-9: Input Noise Voltage Density vs. Frequency. FIGURE 2-10: The MCP6L1/1R/2/4 Show No Phase Reversal. FIGURE 2-11: Quiescent Current vs. Power Supply Voltage. FIGURE 2-12: Output Short Circuit Current vs. Power Supply Voltage. FIGURE 2-13: Ratio of Output Voltage Headroom to Output Current vs. Output Current. FIGURE 2-14: Small Signal, Non-Inverting Pulse Response. FIGURE 2-15: Large Signal, Non-Inverting Pulse Response. FIGURE 2-16: Slew Rate vs. Ambient Temperature. FIGURE 2-17: Output Voltage Swing vs. Frequency. 3.0 Pin Descriptions TABLE 3-1: Pin Function Table 3.1 Analog Outputs 3.2 Analog Inputs 3.3 Power Supply Pins 4.0 Application Information 4.1 Inputs FIGURE 4-1: Protecting the Analog Inputs. FIGURE 4-2: Unity Gain Buffer has a Limited VOUT Range. 4.2 Rail-to-Rail Output 4.3 Capacitive Loads FIGURE 4-3: Output Resistor, RISO, Stabilizes Large Capacitive Loads. 4.4 Supply Bypass 4.5 Unused Op Amps FIGURE 4-4: Unused Op Amps. 4.6 PCB Surface Leakage FIGURE 4-5: Example Guard Ring Layout. 4.7 Application Circuits FIGURE 4-6: Sallen Key Topology. FIGURE 4-7: Multiple Feedback Topology. 5.0 Design Aids 5.1 SPICE Macro Model 5.2 FilterLab® Software 5.3 Microchip Advanced Part Selector (MAPS) 5.4 Analog Demonstration and Evaluation Boards 5.5 Application Notes 6.0 Packaging Information 6.1 Package Marking Information Appendix A: Revision History Product Identification System Worldwide Sales and Service