Datasheet Linear Technology LTC1735 — Datenblatt
Hersteller | Linear Technology |
Serie | LTC1735 |
Hocheffizienter synchroner Abwärtsschaltregler
Datenblätter
Datasheet LTC1735
PDF, 415 Kb, Sprache: en, Datei hochgeladen: Sep 20, 2017, Seiten: 32
High Efficiency Synchronous Step-Down Switching Regulator
High Efficiency Synchronous Step-Down Switching Regulator
Auszug aus dem Dokument
Preise
Verpackung
LTC1735CF#PBF | LTC1735CF#TRPBF | LTC1735CGN#PBF | LTC1735CGN#TRPBF | LTC1735CS#PBF | LTC1735CS#TRPBF | LTC1735EGN#PBF | LTC1735EGN#TRPBF | LTC1735IF#PBF | LTC1735IF#TRPBF | LTC1735IGN#PBF | LTC1735IGN#TRPBF | LTC1735IS#PBF | LTC1735IS#TRPBF | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
Package | TSSOP-20 Paketumrisszeichnung | TSSOP-20 Paketumrisszeichnung | SSOP-16 Paketumrisszeichnung | SSOP-16 Paketumrisszeichnung | SO-16 Paketumrisszeichnung | SO-16 Paketumrisszeichnung | SSOP-16 Paketumrisszeichnung | SSOP-16 Paketumrisszeichnung | TSSOP-20 Paketumrisszeichnung | TSSOP-20 Paketumrisszeichnung | SSOP-16 Paketumrisszeichnung | SSOP-16 Paketumrisszeichnung | SO-16 Paketumrisszeichnung | SO-16 Paketumrisszeichnung |
Package Code | F | F | GN | GN | S | S | GN | GN | F | F | GN | GN | S | S |
Package Index | 05-08-1650 (F20) | 05-08-1650 (F20) | 05-08-1641 (GN16) | 05-08-1641 (GN16) | 05-08-1610 (S16) | 05-08-1610 (S16) | 05-08-1641 (GN16) | 05-08-1641 (GN16) | 05-08-1650 (F20) | 05-08-1650 (F20) | 05-08-1641 (GN16) | 05-08-1641 (GN16) | 05-08-1610 (S16) | 05-08-1610 (S16) |
Pin Count | 20 | 20 | 16 | 16 | 16 | 16 | 16 | 16 | 20 | 20 | 16 | 16 | 16 | 16 |
Parameter
Parameters / Models | LTC1735CF#PBF | LTC1735CF#TRPBF | LTC1735CGN#PBF | LTC1735CGN#TRPBF | LTC1735CS#PBF | LTC1735CS#TRPBF | LTC1735EGN#PBF | LTC1735EGN#TRPBF | LTC1735IF#PBF | LTC1735IF#TRPBF | LTC1735IGN#PBF | LTC1735IGN#TRPBF | LTC1735IS#PBF | LTC1735IS#TRPBF |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Architecture | Constant Frequency Current Mode | Constant Frequency Current Mode | Constant Frequency Current Mode | Constant Frequency Current Mode | Constant Frequency Current Mode | Constant Frequency Current Mode | Constant Frequency Current Mode | Constant Frequency Current Mode | Constant Frequency Current Mode | Constant Frequency Current Mode | Constant Frequency Current Mode | Constant Frequency Current Mode | Constant Frequency Current Mode | Constant Frequency Current Mode |
Demo Boards | DC222A,DC247A | DC222A,DC247A | DC222A,DC247A | DC222A,DC247A | DC222A,DC247A | DC222A,DC247A | DC222A,DC247A | DC222A,DC247A | DC222A,DC247A | DC222A,DC247A | DC222A,DC247A | DC222A,DC247A | DC222A,DC247A | DC222A,DC247A |
Design Tools | LTspice Model | LTspice Model | LTspice Model | LTspice Model | LTspice Model | LTspice Model | LTspice Model | LTspice Model | LTspice Model | LTspice Model | LTspice Model | LTspice Model | LTspice Model | LTspice Model |
Export Control | no | no | no | no | no | no | no | no | no | no | no | no | no | no |
Features | External Synchronization, Resistor Set Frequency, Active Voltage Positioning, Power Good, Soft Start | External Synchronization, Resistor Set Frequency, Active Voltage Positioning, Power Good, Soft Start | External Synchronization, Resistor Set Frequency, Active Voltage Positioning, Power Good, Soft Start | External Synchronization, Resistor Set Frequency, Active Voltage Positioning, Power Good, Soft Start | External Synchronization, Resistor Set Frequency, Active Voltage Positioning, Power Good, Soft Start | External Synchronization, Resistor Set Frequency, Active Voltage Positioning, Power Good, Soft Start | External Synchronization, Resistor Set Frequency, Active Voltage Positioning, Power Good, Soft Start | External Synchronization, Resistor Set Frequency, Active Voltage Positioning, Power Good, Soft Start | External Synchronization, Resistor Set Frequency, Active Voltage Positioning, Power Good, Soft Start | External Synchronization, Resistor Set Frequency, Active Voltage Positioning, Power Good, Soft Start | External Synchronization, Resistor Set Frequency, Active Voltage Positioning, Power Good, Soft Start | External Synchronization, Resistor Set Frequency, Active Voltage Positioning, Power Good, Soft Start | External Synchronization, Resistor Set Frequency, Active Voltage Positioning, Power Good, Soft Start | External Synchronization, Resistor Set Frequency, Active Voltage Positioning, Power Good, Soft Start |
Frequency, kHz | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 | 300 |
Frequency Adjust Range | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz |
Frequency Sync Range | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz | Up to 500kHz |
Integrated Inductor | no | no | no | no | no | no | no | no | no | no | no | no | no | no |
Ishutdown, µA | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
Isupply, mA | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 |
Max Phases | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Monolithic | no | no | no | no | no | no | no | no | no | no | no | no | no | no |
Number of Outputs | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Operating Temperature Range, °C | 0 to 70 | 0 to 70 | 0 to 70 | 0 to 70 | 0 to 70 | 0 to 70 | 0 to 85 | 0 to 85 | -40 to 85 | -40 to 85 | -40 to 85 | -40 to 85 | -40 to 85 | -40 to 85 |
Output Current, A | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
Polyphase | no | no | no | no | no | no | no | no | no | no | no | no | no | no |
Sense Resistor | Rsense | Rsense | Rsense | Rsense | Rsense | Rsense | Rsense | Rsense | Rsense | Rsense | Rsense | Rsense | Rsense | Rsense |
Switch Current, A | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
Synchronous | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes | yes |
Topology | Buck | Buck | Buck | Buck | Buck | Buck | Buck | Buck | Buck | Buck | Buck | Buck | Buck | Buck |
Vin Max, V | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 |
Vin Min, V | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 | 3.5 |
Vout Max, V | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
Vout Maximum | 7V | 7V | 7V | 7V | 7V | 7V | 7V | 7V | 7V | 7V | 7V | 7V | 7V | 7V |
Vout Min, V | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
Vref Accuracy Over Temp, % | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Öko-Plan
LTC1735CF#PBF | LTC1735CF#TRPBF | LTC1735CGN#PBF | LTC1735CGN#TRPBF | LTC1735CS#PBF | LTC1735CS#TRPBF | LTC1735EGN#PBF | LTC1735EGN#TRPBF | LTC1735IF#PBF | LTC1735IF#TRPBF | LTC1735IGN#PBF | LTC1735IGN#TRPBF | LTC1735IS#PBF | LTC1735IS#TRPBF | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RoHS | Compliant | Compliant | Compliant | Compliant | Compliant | Compliant | Compliant | Compliant | Compliant | Compliant | Compliant | Compliant | Compliant | Compliant |
Anwendungshinweise
- OPTI-LOOP Architecture Reduces Output Capacitance and Improves Transient Response &mdash AN76PDF, 271 Kb, Datei veröffentlicht: May 1, 1999
Loop compensation is an uncomfortable subject for many engineers. Experienced power supply designers know that optimum loop compensation is necessary to get the best performance from their power supplies. This application note discusses power supply loop compensation utilizing the features provided by the OPTILOOPTM architecture. Loop compensation basics are presented and simple equations are given for frequency response approximations. Typical transient response requirements for the system supply and CPU supply, used in notebook computers, are discussed. Output voltage transient response waveforms and Bode plots are shown for both optimized and nonoptimized control loops as well as for circuits with optimized loops using different output capacitors. Although this publication focuses on circuits using the LTC1628, LTC1735 and LTC1736, the information applies to all regulators equipped with OPTI-LOOP architecture.Auszug aus dem Dokument
Konstruktionshinweise
- Active Voltage Positioning Reduces Output Capacitors &mdash Design Solutions 10PDF, 130 Kb, Datei veröffentlicht: Nov 1, 1999Auszug aus dem Dokument
- LTC1735 Provides Low Cost, Efficient Mobile CPU Power &mdash DN199PDF, 78 Kb, Datei veröffentlicht: Mar 1, 1999Auszug aus dem Dokument
- 2-Step Voltage Regulation Improves Performance and Decreases CPU Temperature in Portable Computers &mdash DN209PDF, 79 Kb, Datei veröffentlicht: Aug 1, 1999Auszug aus dem Dokument
- Microprocessor Core Supply Voltage Set by I2C Bus Without VID Lines &mdash DN279PDF, 75 Kb, Datei veröffentlicht: Mar 1, 2002Auszug aus dem Dokument
Artikel
- Third-Generation DC/DC Controllers Reduce Size and Cost &mdash LT JournalPDF, 140 Kb, Datei veröffentlicht: Feb 1, 1999Auszug aus dem Dokument
- Active Voltage Positioning Saves Output Capacitors in Portable Computer Applications &mdash LT JournalPDF, 169 Kb, Datei veröffentlicht: Feb 1, 2000Auszug aus dem Dokument
- LTC1645/LTC1735 Circuit Solves PCI Power Problem &mdash LT JournalPDF, 232 Kb, Datei veröffentlicht: Feb 1, 2000Auszug aus dem Dokument
- A Third Generation Dual, Opposing-Phase Switching Regulator Controller &mdash LT JournalPDF, 172 Kb, Datei veröffentlicht: Jun 1, 1999Auszug aus dem Dokument
- SMBus Controls CPU Voltage Regulators without VID Pins &mdash LT JournalPDF, 148 Kb, Datei veröffentlicht: Sep 1, 2001Auszug aus dem Dokument
Modellreihe
Serie: LTC1735 (14)
Herstellerklassifikation
- Power Management > Switching Regulator > Step-Down (Buck) Regulators > External Power Switch Buck Controllers