Datasheet Texas Instruments MSP430G2252 — Datenblatt

HerstellerTexas Instruments
SerieMSP430G2252
Datasheet Texas Instruments MSP430G2252

MSP430G2x52, MSP430G2x12 Mixed-Signal-Mikrocontroller

Datenblätter

MSP430G2x52, MSP430G2x12 Mixed Signal Microcontroller datasheet
PDF, 1.5 Mb, Revision: G, Datei veröffentlicht: May 1, 2013
Auszug aus dem Dokument

Preise

Status

MSP430G2252IN20MSP430G2252IPW14MSP430G2252IPW14RMSP430G2252IPW20MSP430G2252IPW20RMSP430G2252IRSA16RMSP430G2252IRSA16T
Lifecycle StatusActive (Recommended for new designs)Active (Recommended for new designs)Active (Recommended for new designs)Active (Recommended for new designs)Active (Recommended for new designs)Active (Recommended for new designs)Active (Recommended for new designs)
Manufacture's Sample AvailabilityYesNoNoNoNoNoNo

Verpackung

MSP430G2252IN20MSP430G2252IPW14MSP430G2252IPW14RMSP430G2252IPW20MSP430G2252IPW20RMSP430G2252IRSA16RMSP430G2252IRSA16T
N1234567
Pin20141420201616
Package TypeNPWPWPWPWRSARSA
Industry STD TermPDIPTSSOPTSSOPTSSOPTSSOPVQFNVQFN
JEDEC CodeR-PDIP-TR-PDSO-GR-PDSO-GR-PDSO-GR-PDSO-GS-PQFP-NS-PQFP-N
Package QTY209020007020003000250
CarrierTUBETUBELARGE T&RTUBELARGE T&RLARGE T&RSMALL T&R
Device MarkingM430G2252G2252G2252430G2252430G2252M430G2252
Width (mm)6.354.44.44.44.444
Length (mm)24.33556.56.544
Thickness (mm)4.571111.9.9
Pitch (mm)2.54.65.65.65.65.65.65
Max Height (mm)5.081.21.21.21.211
Mechanical DataHerunterladenHerunterladenHerunterladenHerunterladenHerunterladenHerunterladenHerunterladen

Parameter

Parameters / ModelsMSP430G2252IN20
MSP430G2252IN20
MSP430G2252IPW14
MSP430G2252IPW14
MSP430G2252IPW14R
MSP430G2252IPW14R
MSP430G2252IPW20
MSP430G2252IPW20
MSP430G2252IPW20R
MSP430G2252IPW20R
MSP430G2252IRSA16R
MSP430G2252IRSA16R
MSP430G2252IRSA16T
MSP430G2252IRSA16T
ADCADC10 - 8chADC10 - 8chADC10 - 8chADC10 - 8chADC10 - 8chADC10 - 8chADC10 - 8ch
AESN/AN/AN/AN/AN/AN/AN/A
Active Power, uA/MHz320320320320320320320
Additional FeaturesWatchdog,Temp Sensor,Brown Out ResetWatchdog,Temp Sensor,Brown Out ResetWatchdog,Temp Sensor,Brown Out ResetWatchdog,Temp Sensor,Brown Out ResetWatchdog,Temp Sensor,Brown Out ResetWatchdog,Temp Sensor,Brown Out ResetWatchdog,Temp Sensor,Brown Out Reset
BSLNoneNoneNoneNoneNoneNoneNone
CPUMSP430MSP430MSP430MSP430MSP430MSP430MSP430
Comparators8888888
Featuredg2g2g2g2g2g2g2
Frequency, MHz16161616161616
GPIO Pins16161616161616
I2C1111111
Max VCC3.63.63.63.63.63.63.6
Min VCC1.81.81.81.81.81.81.8
MultiplierN/AN/AN/AN/AN/AN/AN/A
Non-volatile Memory, KB2222222
Operating Temperature Range, C-40 to 85-40 to 85-40 to 85-40 to 85-40 to 85-40 to 85-40 to 85
Package GroupPDIPTSSOPTSSOPTSSOPTSSOPQFNQFN
Package Size: mm2:W x L, PKGSee datasheet (PDIP)14TSSOP: 32 mm2: 6.4 x 5(TSSOP)14TSSOP: 32 mm2: 6.4 x 5(TSSOP)14TSSOP: 32 mm2: 6.4 x 5(TSSOP)14TSSOP: 32 mm2: 6.4 x 5(TSSOP)16QFN: 16 mm2: 4 x 4(QFN)16QFN: 16 mm2: 4 x 4(QFN)
RAM, KB0.250.250.250.250.250.250.25
RatingCatalogCatalogCatalogCatalogCatalogCatalogCatalog
SPI1111111
Special I/OCapacitive Touch I/OCapacitive Touch I/OCapacitive Touch I/OCapacitive Touch I/OCapacitive Touch I/OCapacitive Touch I/OCapacitive Touch I/O
Standby Power, LPM3-uA0.70.70.70.70.70.70.7
Timers - 16-bit1111111
Wakeup Time, us1.51.51.51.51.51.51.5

Öko-Plan

MSP430G2252IN20MSP430G2252IPW14MSP430G2252IPW14RMSP430G2252IPW20MSP430G2252IPW20RMSP430G2252IRSA16RMSP430G2252IRSA16T
RoHSCompliantCompliantCompliantCompliantCompliantCompliantCompliant
Pb FreeYes

Anwendungshinweise

  • Digital Addressable Lighting Interface (DALI) Using MSP430 Value Line (Rev. A)
    PDF, 4.5 Mb, Revision: A, Datei veröffentlicht: Oct 18, 2012
    The Digital Addressable Lighting Interface (DALI) was defined in IEC 60929 and has been updated in IEC 62386. One of the main reasons for this update was the inclusion of the LED device type.This application uses the existing TPS62260LED-338 EVM and a level translation board to implement a DALI LED device type control gear. The microcontroller found on the TPS62260LED-338 EVM is the MSP430F2131.
  • Multiple Time Bases on a Single MSP430 Timer Module (Rev. A)
    PDF, 143 Kb, Revision: A, Datei veröffentlicht: Mar 27, 2015
    The timer modules on MSP430™ ultra-low power microcontrollers often base several different outputs off of a single time base – a single timer period. This is especially true for the typical implementation of pulse width modulation (PWM) signals on the MSP430 devices, where one capture compare register (TxCCR0) sets the period, and the rest (TxCCRx) simply set different duty cycles. However, in som
  • Capacitive Touch Sensing, MSP430 Button Gate Time Optimization and Tuning Guide
    PDF, 1.1 Mb, Datei veröffentlicht: May 21, 2013
    MSP430в„ў microcontroller based capacitive touch buttons can offer increased performance when properly optimized and tuned for their specific application. Performance benefits that result from button optimization can include, but are not limited to, decreased power consumption, improved response time, and the ability to grow a design to include more buttons. This application report provides th
  • Capacitive Touch Sensing, MSP430 Slider and Wheel Tuning Guide
    PDF, 1.0 Mb, Datei veröffentlicht: May 21, 2013
    This application report provides guidelines on how to tune capacitive touch sliders and wheels running on the MSP430в„ў microcontrollers. It identifies the hardware and software parameters as well as explains the steps used in tuning sliders and wheels.The slider and wheel tuning is based on the APIs defined within the Capacitive Touch Sense Library (CAPSENSELIBRARY).
  • Capacitive Touch Hardware Design Guide (Rev. A)
    PDF, 784 Kb, Revision: A, Datei veröffentlicht: Nov 17, 2015
    Capacitive touch detection is sometimes considered more art than science. This often results in multiple design iterations before the optimum performance is achieved. There are, however, good design practices for circuit layout and principles of materials that need to be understood to keep the number of iterations to a minimum. This design guide describes a process for creating and designing capac
  • 1-uA Capacitive Grip Detection Based on MSP430 Microcontrollers (Rev. B)
    PDF, 373 Kb, Revision: B, Datei veröffentlicht: Aug 14, 2013
    This application report discusses how to design a simple and ultra low-power grip detector BoosterPack for the MSP430 LaunchPadв„ў. The PINOSC feature in every msp430G2xx2 and msp430G2xx3 device makes it possible to eliminate all the external components when implementing a capacitive touch design. All the components used in the grip detector, such as capacitive sensors, LEDs are all integrate
  • Migrating From MSP430 F2xx and G2xx Families to MSP430 FR4xx and FR2xx Family (Rev. E)
    PDF, 237 Kb, Revision: E, Datei veröffentlicht: May 4, 2018
    This application report helps to ease the migration from MSP430F2xx flash-based MCUs to the MSP430FR4xx and MSP430FR2xx family of FRAM-based MCUs. It discusses programming system hardware core architecture and peripheral considerations. The intent is to highlight key differences between the two families. For more information on the use of the MSP430FR4xx and MSP430FR2xx devices see the MSP430
  • Migrating from the MSP430F2xx,G2xx Family to the MSP430FR58xx/FR59xx/68xx/69xx (Rev. E)
    PDF, 179 Kb, Revision: E, Datei veröffentlicht: Nov 3, 2016
    This application report enables easy migration from MSP430F2xx flash-based MCUs to the MSP430FR58xx/FR59xx/68xx/69xx family of FRAM-based MCUs. For the migration guide to MSP430FR57xx, see Migrating From the MSP430F2xx Family to the MSP430FR57xx Family. It covers programming, system, and peripheral considerations when migrating firmware. The intent is to highlight key differences between the two f
  • QFN and SON PCB Attachment (Rev. B)
    PDF, 821 Kb, Revision: B, Datei veröffentlicht: Aug 24, 2018
  • Spread-Spectrum Clock Source Using an MSP430
    PDF, 228 Kb, Datei veröffentlicht: May 31, 2006
    While spread-spectrum clocking has long since been used in processor and memory clock trees, there are many other clocked systems, such as power supplies or switch-mode amplifiers, that continue to use a single-frequency clock. This can, in turn, generate significant EMI and can make meeting governmental regulations for EMI challenging. These regulations typically set a limit on peak energy within
  • MSP430 Isolated FET Interface
    PDF, 1.2 Mb, Datei veröffentlicht: Oct 10, 2003
    This application report describes how to build an isolated FET interface for the MSP430 Flash Emulation Tool (FET). When developing and debugging line-powered MSP430applications such as motor control, electricity energy meters, power monitoring systems etc. it is important to have electrical isolation for the development tool such that the personnel involved and the connected electronic equipmen
  • Current Transformer Phase Shift Compensation and Calibration
    PDF, 63 Kb, Datei veröffentlicht: Jan 30, 2001
    This application report demonstrates a digital technique to compensate and calibrate the phase shift of a current (or voltage) transformer used in electric power of energy measurement. Traditional analog compensation is replaced by a digital finite impulse response (FIR) filter. A technique emulating a non-unity power factor (non-UPF) load makes the calibration fully automatic. The calibration tim
  • HDQ Protocol Implementation with MSP430
    PDF, 124 Kb, Datei veröffentlicht: Feb 19, 2004
  • Economic Voltage Measurement With the MSP430 Family
    PDF, 91 Kb, Datei veröffentlicht: Oct 12, 1999
    This application report describes voltage and current measurement methods using the MSP430 universal timer/port module. The report explains the two measurement methods (charge and discharge) and shows how to measure voltage and current. The equations for the calculations are also given. Further sections show additional applications such as the measurement of two voltage inputs, bridge arrangem
  • Generation and Recognition of DTMF Signals With the Microcontroller MSP430
    PDF, 233 Kb, Datei veröffentlicht: Oct 1, 1997
    The first part of the Application Report describes the generation of DTMF signals using the Microcontroller MSP430. Following an explanation of the most important specifications which are involved, the theoretical and mathematical processes will be discussed with which sinusoidal waveforms can be derived from square-wave signals, by making use of appropriate analog filters. Tested examples of soft
  • Simple 1.5 V Boost Converter for MSP430
    PDF, 49 Kb, Datei veröffentlicht: Oct 18, 2000
    A simple, efficient, low-cost, boost converter to take 1.5 V from a single type-AA alkaline battery to the operating voltage required by the MSP430 family of ultralow-power microcontrollers is described. Expected battery life is up to 1000 hours.
  • Choosing an Ultra Low-Power MCU
    PDF, 306 Kb, Datei veröffentlicht: Jun 30, 2004
    This application report describes how to compare ultralow-power MCUs. It discusses the key differences between popular low-power MCUs and how to interpret features and specifications and apply them to application requirements.
  • MSP430 LFXT1 Oscillator Accuracy
    PDF, 184 Kb, Datei veröffentlicht: Nov 15, 2004
    This report details the factors that influence achievable accuracy of the low frequency oscillator, specifically for real-time clock (RTC) applications. The intent of this application report is to provide an understanding of MSP430-specific factors influencing real-world achievable RTC accuracy using the LFXT1 oscillator with a standard 32.768 kHz watch crystal and present measurement data support
  • MSP430 Family Mixed-Signal Microcontroller Application Reports
    PDF, 5.5 Mb, Datei veröffentlicht: Jan 21, 2000
    MSP430 Metering Application Report
  • FSK Modulation and Demodulation With the Microcontroller MSP430
    PDF, 110 Kb, Datei veröffentlicht: Dec 14, 1998
    This application report describes a software program for performing V.23 FSK modem transceiver functions using an MSP430 microcontroller. It makes use of novel filter architecture to perform DSP functions on a processor with only shift and add capabilities.
  • Wave Digital Filtering Using the MSP430
    PDF, 220 Kb, Datei veröffentlicht: Sep 13, 2006
    Digital filtering is an integral part of many digital signal processing algorithms. Digital filters are characterized as either recursive [infinite impulse response (IIR)] or non-recursive [finite impulse response (FIR)] filters. IIR filters require a smaller order for the same set of specifications compared to FIR filters, while FIR filters provide a linear phase property. However, IIR filters, i
  • CRC Implementation with MSP430
    PDF, 125 Kb, Datei veröffentlicht: Nov 4, 2004
    Cyclic Redundancy Code (CRC) is commonly used to determine the correctness of a data transmission or storage. This application note presents a solution to compute 16-bit and 32-bit CRCs on the ultra low-power TI MSP430 microcontroller for the bitwise algorithm (low memory, low cost) and the table-based algorithm (low MIPS, low power). Both algorithms are presented in C and MSP430 assembly. Test co
  • Mixing C and Assembler with the MSP430
    PDF, 168 Kb, Datei veröffentlicht: Feb 28, 2002
    This application note describes how C and assembler code can be used together within an MSP430 application. The combination of C and assembler benefits the designer by providing the power of a high-level language as well as the speed, efficiency, and low-level control of assembler.
  • Random Number Generation Using the MSP430
    PDF, 39 Kb, Datei veröffentlicht: Oct 13, 2006
    Many applications require the generation of random numbers. These random numbers are useful for applications such as communication protocols, cryptography, and device individualization.Generating random numbers often requires the use of expensive dedicated hardware. Using the two independent clocks available on the MSP430F2xx family of devices, it is possible to generate random numbers without s
  • Efficient Multiplication and Division Using MSP430
    PDF, 104 Kb, Datei veröffentlicht: Aug 3, 2006
  • Interfacing the MSP430 and TLC549/1549 A/D Converters
    PDF, 44 Kb, Datei veröffentlicht: Nov 16, 2000
    This application report describes how to interface an MSP430 mixed-signal microcontroller with the TLC549 and TLV1549 3-volt A/D converters. This report is written for the MSP430x11x(1) family, but can be adapted to any MSP430 derivative.
  • Interfacing TMS320C5000 DSP to MSP430 Mixed Signal Microcontroller (Rev. A)
    PDF, 82 Kb, Revision: A, Datei veröffentlicht: Oct 13, 2000
    The TMS320C5000в„ў family of digital signal processors (DSPs) features Host Port Interface Controllers (HPI) and Direct Memory Access Controllers (DMAC) for efficient data movement without any CPU involvement. The HPI enables the DSP to interface to host processors (typically microcontrollers) bidirectionally with minimal or no external interface logic. This application report presents a hardw
  • MSP430 Capacitive Single-Touch Sensor Design Guide
    PDF, 770 Kb, Datei veröffentlicht: Jan 16, 2008
    This application report discusses the design of RC-type capacitive single-touch sensors using the MSP430 microcontroller. The MSP430 has some unique features that make it suitable for interfacing with capacitive-touch sensors. The RC-type method does not need special peripherals and can be implemented with all devices in the MSP430 product family. This method is also inherently low power and can
  • MSP430 Flash Memory Characteristics (Rev. A)
    PDF, 171 Kb, Revision: A, Datei veröffentlicht: Apr 14, 2008
    Flash memory is a widely used, reliable, and flexible nonvolatile memory to store software code and data in a microcontroller. Failing to handle the flash according to data-sheet specifications may result in unreliable operation of the application. This application report explains the physics behind these specifications and also gives recommendations for correct MSP430 flash handling. All examples
  • MSP430 Software Coding Techniques (Rev. A)
    PDF, 62 Kb, Revision: A, Datei veröffentlicht: Jul 17, 2006
    This application report covers software techniques and topics of interest to all MSP430 programmers. The first part of the document discusses the MSP430 standard interrupt-based code flow model, recommended for the vast majority of applications. The next part discusses a handful of techniques that should be considered by any developer that sets out to develop an MSP430 application. Using these met
  • MSP430 SMBus
    PDF, 128 Kb, Datei veröffentlicht: Sep 29, 1999
    This application report describes a software implementation of the system management bus (SMBus) for the MSP430 microcontroller. It includes all master protocols, an interrupt-driven slave, and master usage examples. SMBus is derived from the I2C and is commonly used in smart batteries and other system devices.
  • Programming a Flash-Based MSP430 Using the JTAG Interface (Rev. H)
    PDF, 19 Kb, Revision: H, Datei veröffentlicht: Jul 14, 2010
    This application report has been superseded by the document shown below. Information previously contained in this application report can be found by clicking on the following links.- MSP430 Programming Via the JTAG Interface User's Guide Download MSP430 Programming Via the JTAG Interface (PDF) Download
  • Tiny DCDC Converter Reference Design (Rev. A)
    PDF, 458 Kb, Revision: A, Datei veröffentlicht: Jun 14, 2010
    This reference design is presented to help application designers and others who are trying to use the MSP430 in a system with an input voltage in the range of 3.6 V to 6 V with the primary design objective to minimize solution size as well as to maintain high efficiency and long battery life.
  • Understanding MSP430 Flash Data Retention
    PDF, 475 Kb, Datei veröffentlicht: Mar 27, 2008
    The MSP430 family of microcontrollers, as part of its broad portfolio, offers both read-only memory (ROM)-based and flash-based devices. Understanding the MSP430 flash is extremely important for efficient, robust, and reliable system design. Data retention is one of the key aspects to flash reliability. In this application report, data retention for the MSP430 flash is discussed in detail and the
  • Implementing An Ultralow-Power Keypad Interface with MSP430
    PDF, 134 Kb, Datei veröffentlicht: Feb 20, 2002
    Often in applications with keypads, the condition can occur where a key can be held or stuck down, causing excess current consmption and reducing the battery life of a battery-operated product. This application report shows a solution. The keypad interface in this report, based on the MSP430, draws .1uA while waiting for a key press, is completely interrupt driven requring no polling, and consum
  • Interfacing the 3-V MSP430 to 5-V Circuits
    PDF, 421 Kb, Datei veröffentlicht: Oct 1, 2002
    The interfacing of the 3-V MSP430x1xx and MSP430x4xx microcontroller families to circuits with a supply of 5 V or higher is shown. Input, output and I/O interfaces are given and explained. Worse-case design equations are provided, where necessary. Some simple power supplies generating both voltages are shown, too.
  • Li-Ion Battery Charger solution using the MSP430
    PDF, 64 Kb, Datei veröffentlicht: Dec 31, 2005
  • Boost DC/DC with Ultra-Low Shutdown Current (Rev. A)
    PDF, 121 Kb, Revision: A, Datei veröffentlicht: Jun 14, 2010
    This reference design is presented to help application designers and others who are trying to use the MSP430 in a system that requires a very low input voltage range while also maintaining high efficiency. Battery life is extended as well as a result of the low quiescent current (5 mA) and ultra-low shutdown current (5 nA) of the TPS61097-33. This particular design allows for an input voltage betw
  • Efficient MSP430 Code Synthesis for an FIR Filter
    PDF, 95 Kb, Datei veröffentlicht: Mar 29, 2007
    Digital filtering can be easily accomplished on the MSP430 using efficient multiplication. The tool accompanying this document automatically converts FIR filter coefficients to MSP430 assembly code that can be used in any application. Horner’s method and CSD format is used to accomplish the efficient multiply operations. The performance of the filter on the MSP430 is shown by evaluating the gain a
  • 1.8V – 5.5V Input, High-Efficiency DCDC Converter Reference Design for MSP430 (Rev. B)
    PDF, 961 Kb, Revision: B, Datei veröffentlicht: Jun 14, 2010
    This reference design is presented to help application designers and others who are trying to use the MSP430 in a system with an input voltage in the range of 1.8 V to 5.5 V, and who must increase the application run time by making use of the complete battery voltage range while still maintaining high efficiency over the entire battery life.
  • Digital Fan Control With Tachometer Using MSP430
    PDF, 82 Kb, Datei veröffentlicht: Nov 10, 2005
    Digital Fan Control with Tachometer using MSP430 Application Report
  • MSP430 32-kHz Crystal Oscillators (Rev. D)
    PDF, 426 Kb, Revision: D, Datei veröffentlicht: Jul 18, 2017
    Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the correct crystal for ultra-low-power operation of an MSP430в„ў MCU. In addition, hints and examples for correct board layout are given. The document also contains detailed i
  • AES128 – A C Implementation for Encryption and Decryption (Rev. A)
    PDF, 460 Kb, Revision: A, Datei veröffentlicht: Mar 17, 2009
    This application report describes the AES algorithm and the use of a suggested C implementation for AES encryption and decryption with MSP430.Note: This document may be subject to the export control policies of the local government.
  • Using the TPS3619 with MSP430 Microcontrollers Can Reduce Sys Power Consumption (Rev. A)
    PDF, 37 Kb, Revision: A, Datei veröffentlicht: May 19, 2003
    The MSP430 series of microcontrollers are ideal in applications where battery life is critical. These microcontollers require only 0.1?A of current in low-power RAM retention mode; In this mode the microcontroller must have power to retain volatile memory. In some systems with charge pumps, the TPS3619 can be used to shut down the charge pump, saving system power consumption.
  • Advanced Debugging Using the Enhanced Emulation Module (EEM) With CCS v6 (Rev. F)
    PDF, 837 Kb, Revision: F, Datei veröffentlicht: Sep 6, 2016
  • Powering the MSP430 from a High Voltage Input using the TPS62122 (Rev. C)
    PDF, 330 Kb, Revision: C, Datei veröffentlicht: Jan 12, 2012

Modellreihe

Herstellerklassifikation

  • Semiconductors> Microcontrollers (MCU)> MSP430 ultra-low-power MCUs> MSP430G2x/i2x