Datasheet Texas Instruments MSP430FR2633IDAR — Datenblatt
Hersteller | Texas Instruments |
Serie | MSP430FR2633 |
Artikelnummer | MSP430FR2633IDAR |
MSP430 MCU mit CapTIvate-Technologie - die leistungsschwächste, rauschunempfindlichste kapazitive Berührung 32-TSSOP -40 bis 85
Datenblätter
MSP430FR263x, MSP430FR253x Capacitive Touch Sensing Mixed-Signal Microcontrollers datasheet
PDF, 2.8 Mb, Revision: B, Datei veröffentlicht: Jun 8, 2017
Auszug aus dem Dokument
Preise
Status
Lifecycle Status | Active (Recommended for new designs) |
Manufacture's Sample Availability | Yes |
Verpackung
Pin | 32 |
Package Type | DA |
Industry STD Term | TSSOP |
JEDEC Code | R-PDSO-G |
Package QTY | 2000 |
Carrier | LARGE T&R |
Device Marking | FR2633 |
Width (mm) | 6.2 |
Length (mm) | 11 |
Thickness (mm) | 1.15 |
Pitch (mm) | .65 |
Max Height (mm) | 1.2 |
Mechanical Data | Herunterladen |
Parameter
ADC | ADC10 - 8ch |
AES | N/A |
Active Power | 126 uA/MHz |
Additional Features | Real-Time Clock,Watchdog,Temp Sensor,Brown Out Reset |
BSL | I2C,UART |
CPU | MSP430 |
Featured | NA |
Frequency | 16 MHz |
GPIO Pins | 19 |
I2C | 1 |
Max VCC | 3.6 |
Min VCC | 1.8 |
Multiplier | 32x32 |
Non-volatile Memory | 16 KB |
Operating Temperature Range | -40 to 85 C |
Package Group | TSSOP |
Package Size: mm2:W x L | 32TSSOP: 89 mm2: 8.1 x 11(TSSOP) PKG |
RAM | 4 KB |
Rating | Catalog |
SPI | 2 |
Special I/O | CapTIvate Touch I/O |
Standby Power | 1.5 LPM3-uA |
Timers - 16-bit | 4 |
UART | 2 |
Wakeup Time | 10 us |
Öko-Plan
RoHS | Compliant |
Design Kits und Evaluierungsmodule
- Evaluation Modules & Boards: MSP-CAPT-FR2633
MSP CapTIvate MCU Development Kit
Lifecycle Status: Active (Recommended for new designs) - Development Kits: CAPTIVATE-METAL
Touch on Metal Capacitive Sensing Add-on Board for the CapTIvateВ™ Development Kit
Lifecycle Status: Active (Recommended for new designs) - JTAG Emulators/ Analyzers: ENERGYTRACE
MSP EnergyTrace Technology
Lifecycle Status: Active (Recommended for new designs)
Anwendungshinweise
- VLO Calibration on the MSP430FR4xx and MSP430FR2xx Family (Rev. A)PDF, 78 Kb, Revision: A, Datei veröffentlicht: Feb 19, 2016
MSP430FR4xx and MSP430FR2xx (FR4xx/FR2xx) family microcontrollers (MCUs) provide various clock sources, including some high-speed high-accuracy clocks and some low-power low-system-cost clocks. Users can select the best balance of performance, power consumption, and system cost. The on-chip very low-frequency oscillator (VLO) is a clock source with 10-kHz typical frequency included in FR4xx/FR2xx - MSP430 FRAM Technology – How To and Best PracticesPDF, 326 Kb, Datei veröffentlicht: Jun 23, 2014
FRAM is a non-volatile memory technology that behaves similar to SRAM while enabling a whole host of new applications, but also changing the way firmware should be designed. This application report outlines the how to and best practices of using FRAM technology in MSP430 from an embedded software development perspective. It discusses how to implement a memory layout according to application-specif - MSP430 FRAM Quality and Reliability (Rev. A)PDF, 295 Kb, Revision: A, Datei veröffentlicht: May 1, 2014
FRAM is a nonvolatile embedded memory technology and is known for its ability to be ultra-low power while being the most flexible and easy-to-use universal memory solution available today. This application report is intended to give new FRAM users and those migrating from flash-based applications knowledge on how FRAM meets key quality and reliability requirements such as data retention and endura - Migrating From MSP430 F2xx and G2xx Families to MSP430 FR4xx and FR2xx Family (Rev. E)PDF, 237 Kb, Revision: E, Datei veröffentlicht: May 4, 2018
This application report helps to ease the migration from MSP430F2xx flash-based MCUs to the MSP430FR4xx and MSP430FR2xx family of FRAM-based MCUs. It discusses programming system hardware core architecture and peripheral considerations. The intent is to highlight key differences between the two families. For more information on the use of the MSP430FR4xx and MSP430FR2xx devices see the MSP430 - General Oversampling of MSP ADCs for Higher Resolution (Rev. A)PDF, 551 Kb, Revision: A, Datei veröffentlicht: Apr 1, 2016
Multiple MSP ultra-low-power microcontrollers offer analog-to-digital converters (ADCs) to convert physical quantities into digital numbers, a function that is widely used across numerous applications. There are times, however, when a customer design demands a higher resolution than the ADC of the selected MSP can offer. This application report, which is based on the previously-published Oversampl
Modellreihe
Serie: MSP430FR2633 (6)
- MSP430FR2633IDA MSP430FR2633IDAR MSP430FR2633IRHBR MSP430FR2633IRHBT MSP430FR2633IYQWR MSP430FR2633IYQWT
Herstellerklassifikation
- Semiconductors > Microcontrollers (MCU) > MSP430 ultra-low-power MCUs > MSP430FRxx FRAM