Datasheet Texas Instruments 74ALVC164245GRDR — Datenblatt
Hersteller | Texas Instruments |
Serie | SN74ALVC164245 |
Artikelnummer | 74ALVC164245GRDR |
16-Bit-Transceiver mit 2,5-V- bis 3,3-V- / 3,3-V- bis 5-V-Pegelverschiebung und 3-Zustands-Ausgängen 54-BGA MICROSTAR JUNIOR -40 bis 85
Datenblätter
SN74ALVC164245 16-Bit 2.5-V to 3.3-V or 3.3-V to 5-V Level-Shifting Transceiver With 3-State Outputs datasheet
PDF, 1.1 Mb, Revision: Q, Datei veröffentlicht: Sep 27, 2016
Auszug aus dem Dokument
Preise
Status
Lifecycle Status | Obsolete (Manufacturer has discontinued the production of the device) |
Manufacture's Sample Availability | No |
Verpackung
Pin | 54 |
Package Type | GRD |
Industry STD Term | BGA MICROSTAR JUNIOR |
JEDEC Code | R-PBGA-N |
Width (mm) | 5.5 |
Length (mm) | 8 |
Thickness (mm) | .8 |
Pitch (mm) | .8 |
Max Height (mm) | 1.2 |
Mechanical Data | Herunterladen |
Ersatz
Replacement | 74ALVC164245ZRDR |
Replacement Code | P |
Parameter
Approx. Price (US$) | 0.87 | 1ku |
Bits(#) | 16 |
ICCA Static Current(mA) | 0.04 |
ICCB Static Current(mA) | 0.04 |
Operating Temperature Range(C) | -40 to 85 |
Package Group | BGA MICROSTAR JUNIOR |
Package Size: mm2:W x L (PKG) | 56BGA MICROSTAR JUNIOR: 32 mm2: 4.5 x 7(BGA MICROSTAR JUNIOR) |
Rating | Catalog |
VCCA(Max)(V) | 3.3 |
VCCA(Min)(V) | 2.5 |
VCCB(Max)(V) | 5 |
VCCB(Min)(V) | 3.3 |
Öko-Plan
RoHS | Not Compliant |
Pb Free | No |
Anwendungshinweise
- TI SN74ALVC16835 Component Specification Analysis for PC100PDF, 43 Kb, Datei veröffentlicht: Aug 3, 1998
The PC100 standard establishes design parameters for the PC SDRAM DIMM that is designed to operate at 100 MHz. The 168-pin, 8-byte, registered SDRAM DIMM is a JEDEC-defined device (JC-42.5-96-146A). Some of the defined signal paths include data signals, address signals, and control signals. This application report discusses the SN74ALVC16835 18-bit universal bus driver that is available from T - Logic Solutions for PC-100 SDRAM Registered DIMMs (Rev. A)PDF, 96 Kb, Revision: A, Datei veröffentlicht: May 13, 1998
Design of high-performance personal computer (PC) systems that are capable of meeting the needs imposed by modern operating systems and software includes the use of large banks of SDRAMs on DIMMs (see Figure 1).To meet the demands of stable functionality over the broad spectrum of operating environments, meet system timing needs, and to support data integrity, the loads presented by the large - 16-Bit Widebus Logic Families in 56-Ball 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B)PDF, 895 Kb, Revision: B, Datei veröffentlicht: May 22, 2002
TI?s 56-ball MicroStar Jr.E package registered under JEDEC MO-225 has demonstrated through modeling and experimentation that it is an optimal solution for reducing inductance and capacitance improving thermal performance and minimizing board area usage in integrated bus functions. Multiple functions released in the 56-ball MicroStar Jr.E package have superior performance characteristics compa - Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A)PDF, 105 Kb, Revision: A, Datei veröffentlicht: Aug 1, 1997
The spectrum of bus-interface devices with damping resistors or balanced/light output drive currently offered by various logic vendors is confusing at best. Inconsistencies in naming conventions and methods used for implementation make it difficult to identify the best solution for a given application. This report attempts to clarify the issue by looking at several vendors? approaches and discussi - Understanding Advanced Bus-Interface Products Design GuidePDF, 253 Kb, Datei veröffentlicht: May 1, 1996
- Migration From 3.3-V To 2.5-V Power Supplies For Logic DevicesPDF, 115 Kb, Datei veröffentlicht: Dec 1, 1997
This application report explores the possibilities for migrating to 3.3-V and 2.5-V power supplies and discusses the implications.Customers are successfully using a wide range of low-voltage 3.3-V logic devices. These devices are within Texas Instruments (TI) advanced low-voltage CMOS (ALVC) crossbar technology (CBT) crossbar technology with integrated diode (CBTD) low-voltage crossbar techn - Benefits & Issues of Migrating 5-V and 3.3-V Logic to Lower-Voltage Supplies (Rev. A)PDF, 154 Kb, Revision: A, Datei veröffentlicht: Sep 8, 1999
In the last few years the trend toward reducing supply voltage (VCC) has continued as reflected in an additional specification of 2.5-V VCC for the AVC ALVT ALVC LVC LV and the CBTLV families.In this application report the different logic levels at VCC of 5 V 3.3 V 2.5 V and 1.8 V are compared. Within the report the possibilities for migration from 5-V logic and 3.3-V logic families - Live InsertionPDF, 150 Kb, Datei veröffentlicht: Oct 1, 1996
Many applications require the ability to exchange modules in electronic systems without removing the supply voltage from the module (live insertion). For example an electronic telephone exchange must always remain operational even during module maintenance and repair. To avoid damaging components additional circuitry modifications are necessary. This document describes in detail the phenomena tha - Input and Output Characteristics of Digital Integrated CircuitsPDF, 1.7 Mb, Datei veröffentlicht: Oct 1, 1996
This report contains a comprehensive collection of the input and output characteristic curves of typical integrated circuits from various logic families. These curves go beyond the information given in data sheets by providing additional details regarding the characteristics of the components. This knowledge is particularly useful when for example a decision must be made as to which circuit shou - CMOS Power Consumption and CPD Calculation (Rev. B)PDF, 89 Kb, Revision: B, Datei veröffentlicht: Jun 1, 1997
Reduction of power consumption makes a device more reliable. The need for devices that consume a minimum amount of power was a major driving force behind the development of CMOS technologies. As a result CMOS devices are best known for low power consumption. However for minimizing the power requirements of a board or a system simply knowing that CMOS devices may use less power than equivale
Modellreihe
Serie: SN74ALVC164245 (15)
Herstellerklassifikation
- Semiconductors > Logic > Voltage Level Translation > Application Specific Voltage Translation