Datasheet Texas Instruments MSP430FR2311IPW16R — Datenblatt

HerstellerTexas Instruments
SerieMSP430FR2311
ArtikelnummerMSP430FR2311IPW16R
Datasheet Texas Instruments MSP430FR2311IPW16R

16-MHz-Mikrocontroller mit extrem geringem Stromverbrauch, 4 KB FRAM, 1 KB SRAM, 12 E / A, 8-Kanal-ADC10, OpAmps, TIA 16-TSSOP -40 bis 85

Datenblätter

MSP430FR231x Mixed-Signal Microcontrollers datasheet
PDF, 1.7 Mb, Revision: C, Datei veröffentlicht: Sep 11, 2017
Auszug aus dem Dokument

Preise

Status

Lifecycle StatusActive (Recommended for new designs)
Manufacture's Sample AvailabilityYes

Verpackung

Pin16
Package TypePW
Industry STD TermTSSOP
JEDEC CodeR-PDSO-G
Package QTY2000
CarrierLARGE T&R
Device MarkingFR2311
Width (mm)4.4
Length (mm)5
Thickness (mm)1
Pitch (mm).65
Max Height (mm)1.2
Mechanical DataHerunterladen

Parameter

ADCADC10 - 8ch
AESN/A
Active Power126 uA/MHz
Additional FeaturesOpAmp,Transimpedance amplifier,Real-Time Clock,Watchdog,Temp Sensor,Brown Out Reset
BSLUART
CPUMSP430
Comparators2
Featuredfr2
Frequency16 MHz
GPIO Pins16
I2C1
Max VCC3.6
Min VCC1.8
MultiplierN/A
Non-volatile Memory4 KB
Operating Temperature Range-40 to 85 C
Package GroupTSSOP
Package Size: mm2:W x L16TSSOP: 32 mm2: 6.4 x 5(TSSOP) PKG
RAM1 KB
RatingCatalog
SPI2
Security EnablerCryptographic acceleration,Debug security,Physical security,Secure FW and SW update,Software IP protection
Special I/ON/A
Standby Power1 LPM3-uA
Timers - 16-bit2
UART1
Wakeup Time10 us

Öko-Plan

RoHSCompliant

Design Kits und Evaluierungsmodule

  • Evaluation Modules & Boards: MSP-FET430U20
    MSP-FET + MSP-TS430PW20 FRAM Microcontroller Development Kit Bundle (Microcontrollers not Included)
    Lifecycle Status: Active (Recommended for new designs)
  • Evaluation Modules & Boards: MSP-TS430PW20
    Target Development Board for MSP430FR2000, MSP430FR21x and MSP430FR23x MCUs - 20-pin
    Lifecycle Status: Active (Recommended for new designs)
  • Evaluation Modules & Boards: MSP-EXP430FR2311
    MSP430FR2311 LaunchPad Development Kit
    Lifecycle Status: Active (Recommended for new designs)

Anwendungshinweise

  • How to Use the Integrated Operational Amplifiers on MSP430FR2311
    PDF, 190 Kb, Datei veröffentlicht: Jul 19, 2016
    In sensing applications, operational amplifiers are often needed to condition (for example, to amplify and filter) the analog sensor output so that it can be properly sampled by the analog-to-digital converter on the MCU. This application report provides a guide to set up the integrated operational amplifiers (TIA and SAC_OA) on the MSP430FR2311 microcontroller. Examples are provided for using the
  • VLO Calibration on the MSP430FR4xx and MSP430FR2xx Family (Rev. A)
    PDF, 78 Kb, Revision: A, Datei veröffentlicht: Feb 19, 2016
    MSP430FR4xx and MSP430FR2xx (FR4xx/FR2xx) family microcontrollers (MCUs) provide various clock sources, including some high-speed high-accuracy clocks and some low-power low-system-cost clocks. Users can select the best balance of performance, power consumption, and system cost. The on-chip very low-frequency oscillator (VLO) is a clock source with 10-kHz typical frequency included in FR4xx/FR2xx
  • MSP430 FRAM Technology – How To and Best Practices
    PDF, 326 Kb, Datei veröffentlicht: Jun 23, 2014
    FRAM is a non-volatile memory technology that behaves similar to SRAM while enabling a whole host of new applications, but also changing the way firmware should be designed. This application report outlines the how to and best practices of using FRAM technology in MSP430 from an embedded software development perspective. It discusses how to implement a memory layout according to application-specif
  • MSP430 FRAM Quality and Reliability (Rev. A)
    PDF, 295 Kb, Revision: A, Datei veröffentlicht: May 1, 2014
    FRAM is a nonvolatile embedded memory technology and is known for its ability to be ultra-low power while being the most flexible and easy-to-use universal memory solution available today. This application report is intended to give new FRAM users and those migrating from flash-based applications knowledge on how FRAM meets key quality and reliability requirements such as data retention and endura
  • Migrating From MSP430 F2xx and G2xx Families to MSP430 FR4xx and FR2xx Family (Rev. E)
    PDF, 237 Kb, Revision: E, Datei veröffentlicht: May 4, 2018
    This application report helps to ease the migration from MSP430F2xx flash-based MCUs to the MSP430FR4xx and MSP430FR2xx family of FRAM-based MCUs. It discusses programming system hardware core architecture and peripheral considerations. The intent is to highlight key differences between the two families. For more information on the use of the MSP430FR4xx and MSP430FR2xx devices see the MSP430
  • General Oversampling of MSP ADCs for Higher Resolution (Rev. A)
    PDF, 551 Kb, Revision: A, Datei veröffentlicht: Apr 1, 2016
    Multiple MSP ultra-low-power microcontrollers offer analog-to-digital converters (ADCs) to convert physical quantities into digital numbers, a function that is widely used across numerous applications. There are times, however, when a customer design demands a higher resolution than the ADC of the selected MSP can offer. This application report, which is based on the previously-published Oversampl

Modellreihe

Herstellerklassifikation

  • Semiconductors > Microcontrollers (MCU) > MSP430 ultra-low-power MCUs > MSP430FRxx FRAM