PDF, 57 Kb, Datei veröffentlicht: Jul 24, 2000
This application report describes how you can begin development now for the Texas Instruments TMS320C6712 digital signal processor (DSP) systems. The similarities and differences between the C6712 and the C6711 devices are briefly discussed. Because of the compatibility between TMS320C6000 generation devices, existing C6000 software tools and development platforms can be used to develop code for t
PDF, 125 Kb, Revision: F, Datei veröffentlicht: Nov 11, 2005
This document describes issues of interest related to migration from the Texas Instruments TMS320C6712 GFN package and TMS320C6712C GDP package to the TMS320C6712D digital signal processor (DSP) GDP package. The objective of this document is to indicate differences between these devices. Functions that are identical between these devices are not included. For detailed information on the specific f
PDF, 111 Kb, Datei veröffentlicht: Apr 23, 2003
This application report describes how you can begin development now for the Texas Instruments (TIВ™) TMS320C67x generation of high-performance digital signal processors (DSPs). Because of the compatibility between TMS320C6000 generation devices, existing C6000 software tools and development platforms can be used to develop code for the C67x and other future devices. This capability allows for s
PDF, 151 Kb, Datei veröffentlicht: Nov 7, 2000
The enhanced DMA (EDMA) controller of the TMS320C621x and TMS320C671x devices is a highly efficient data transfer engine, controlling all of the data movement beyond the level-two memory of the device. There are sixteen channels and a quick DMA (QDMA) available to perform programmable data transfers, giving a great deal of flexibility. With this flexibility comes the responsibility to intelligentl
PDF, 93 Kb, Revision: A, Datei veröffentlicht: May 31, 2004
This document discusses the power consumption of the Texas Instruments TMS320C6711D, TMS320C6712D, and TMS320C6713B digital signal processors (DSPs). Power consumption on these devices is highly application dependent, so a spreadsheet is provided to model power consumption for a user's application. To get good results from the spreadsheet, realistic usage parameters must be entered. The low core v
PDF, 255 Kb, Datei veröffentlicht: Mar 5, 2004
The enhanced DMA (EDMA) controller of the TMS320C621xв„ў/TMS320C671xв„ў device is a highly efficient data transfer engine. To maximize bandwidth, minimize transfer interference, and fully utilize the resources of the EDMA, it is crucial to understand the architecture of the engine. Transfer requests (TRs) originate from many requestors, including sixteen programmable EDMA channels, the lev
PDF, 233 Kb, Datei veröffentlicht: Mar 5, 2004
The enhanced DMA (EDMA) controller of the TMS320C621xв„ў/TMS320C671xв„ў devices is a highly efficient data transfer engine, capable of maintaining transfers at up to 1800 MB/sec at a 225 MHz CPU clock frequency. This document details actual bandwidth achieved under various operating conditions. Ideal transfer bandwidth is explored in TMS320C6000 EDMA IO Scheduling and Performance (S
PDF, 864 Kb, Revision: A, Datei veröffentlicht: Apr 10, 2002
The TMS320C6000? on-chip direct memory access (DMA) controller from Texas Instruments is used to transfer data between two locations in the memory map in the background of CPU operation. Typically, the DMA is used to:Transfer blocks of data between external and internal data memoriesRestructure portions of internal data memoryContinually service a peripheralPage program s
PDF, 1.4 Mb, Revision: A, Datei veröffentlicht: Oct 24, 2001
The enhanced direct memory access (EDMA) controller is the backbone of the two-level cache architecture for the TMS320C6000? DSPs. The EDMA performs:o cache servicingo host-port servicingo user-programmable data transfers Through proper configuration, EDMA channels can be set up to operate continuously without requiring CPU intervention or reprogramming. This allows the CPU to use its
PDF, 248 Kb, Revision: C, Datei veröffentlicht: Apr 17, 2002
This application report describes an interface between the Texas Instruments TMS320C6000в„ў DSP host port and the PLX Technology PCI9050 (PCI9052), the PCI interface chip. The PCI9052 is functionally the same as the PCI9050. The only difference between these two devices is that the PCI9052 is somewhat faster than the PCI9050.This application report includes a diagram showing connections be
PDF, 272 Kb, Revision: A, Datei veröffentlicht: Aug 31, 2001
This application report describes the interface between the Texas Instruments (TI) TMS320C6000в„ў digital signal processor (DSP) host port and the Intel 80960 microprocessor. The document includes schematics showing connections between the two devices, PAL equations, and verification that timing requirements are met for each device (tables and timing diagrams).
PDF, 311 Kb, Revision: A, Datei veröffentlicht: Jun 21, 2001
This application report describes an interface between the Motorola MPC860 microprocessor and the host port interface (HPI) of a Texas Instruments TMS320C6000в„ў (C6000в„ў) digital signal processor (DSP) device. This document includes a schematic showing connections between the two devices, PAL equations, and verification that timing requirements are met for each device (tables and timing
PDF, 261 Kb, Revision: A, Datei veröffentlicht: Sep 30, 2001
This application report describes an interface between the Motorola MC68360 quad integrated communication controller (QUICC) and the host port interface (HPI) of a TMS320C6000в„ў (C6000в„ў) digital signal processor (DSP) device. This includes a schematic showing connections between the two devices and verification that timing requirements are met for each device (tables and timing diagrams
PDF, 129 Kb, Revision: A, Datei veröffentlicht: Aug 15, 2001
This document describes how to provide the Texas Instruments TMS320C6000в„ў DSP with a system clock. All of the clocks internal to the C6000в„ў are generated from a single source through the CLKIN pin. This source clock for the device is an external signal that, depending on the clock mode, either drives the on-chip Phase-Locked Loop (PLL) circuit, which multiplies the source clock in freq
PDF, 309 Kb, Revision: A, Datei veröffentlicht: Sep 30, 2001
This application report describes the architecture and capabilities of the AMCC S5933 PCI controller and how it can be interfaced to the TMS320C6201 digital signal processor (DSP). The DSP's host port interface (HPI) can be a PCI target, and its external memory interface (EMIF) can be used to support PCI bus mastering. Details on the signals and logic required to implement both PCI slave and maste
PDF, 93 Kb, Datei veröffentlicht: Sep 8, 1999
This document describes how to use the multichannel buffered serial port (McBSP) in the Texas Instruments (TI)(TM) TMS320C6000 digital signal processors (DSP) to interface with devices that conform to the Inter-IC Sound (I2S) specification. I2S is a protocol for transmitting two channels of digital audio data over a single serial connection.The flexible McBSP in the TMS320C6000 supports the I
PDF, 257 Kb, Revision: A, Datei veröffentlicht: Oct 31, 2001
This application report describes how to use the multichannel buffered serial port (McBSP) in the Texas Instruments TMS320C6000в„ў digital signal processor (DSP) for data packing. Data packing involves moving either multiple successive 8-bit elements to/from the McBSP as a single 16/24/32-bit element or multiple successive 16-bit words to/from the McBSP as a single 32-bit word.The McBSP
PDF, 172 Kb, Revision: A, Datei veröffentlicht: Sep 12, 2000
This application report explains how circular buffering is implemented on the TMS320C6000? devices. Circular buffering helps to implement finite impulse response (FIR) filters efficiently. Filters require delay lines or buffers of past (and current) samples. Circular addressing simplifies the manipulation of pointers in accessing the data samples.This application report addresses the following
PDF, 232 Kb, Revision: C, Datei veröffentlicht: Mar 8, 2004
The TMS320C6000? multichannel buffered serial port (McBSP) can operate in a variety of modes, as per application requirements. For proper operation, the serial port must be initialized in a specific order. This document describes the initialization steps necessary when either the (E)DMA or the CPU is used to service the McBSP data. Typically, the (E)DMA is used to perform read/write transfers from
PDF, 89 Kb, Revision: C, Datei veröffentlicht: Apr 2, 2002
Designing a TMS320C6000в„ў DSP board to utilize all of the functionality of the JTAG scan path is a simple process, but a few considerations must be taken into account. The default state of the emulation signals determines whether the JTAG port is used for emulation or for boundary scan. It is therefore necessary to provide flexibility in the design to accommodate those modes that are desired.
PDF, 289 Kb, Revision: A, Datei veröffentlicht: Jul 10, 2001
This document describes how to use the multichannel buffered serial ports (McBSPs) in the Texas Instruments TMS320C6000в„ў digital signal processor (DSP) as a digital controller for an audio codec 1997 device.The McBSP is connected to a stereo audio codec 1997 device. This application report uses the TLV320AIC27 audio codec (AIC27) as an example. The audio codec 1997 (AC'97) standard spec
PDF, 118 Kb, Revision: A, Datei veröffentlicht: Aug 31, 2001
Interfacing external asynchronous static RAM (ASRAM) to the Texas Instruments (TIв„ў) TMS320C6000 series of digital signal processors (DSPs) is simple compared to previous generations of TI DSPs, thanks to the advanced external memory interface (EMIF). The EMIF provides a glueless interface to a variety of external memory devices.This document describes:EMIF control registers and ASR
PDF, 87 Kb, Revision: B, Datei veröffentlicht: Jun 4, 2002
This document describes how the multichannel buffered serial ports (McBSPs) in the Texas Instruments TMS320C6000в„ў digital signal processor (DSP) are used to communicate to a single-rate Serial Telecom (ST)-BUS-compliant device.The McBSP receives the framing signal, clock, and data from the ST-BUSв„ў device and processes them to generate internal frame syncs and clocks for correct data
PDF, 471 Kb, Revision: A, Datei veröffentlicht: Feb 13, 2002
Interfacing external flash memory to the Texas Instruments TMS320C6000в„ў digital signal processor (DSP) is simple compared to previous generations of TI DSPs. The TMS320C6000 advanced external memory interface (EMIF) provides a glueless interface to a variety of external memory devices.This document describes the following:EMIF control registers and asynchronous interface signals<
PDF, 154 Kb, Datei veröffentlicht: Dec 7, 1999
The first optimization step that you can perform on C source code for the TMS320C62xx is to use intrinsic operators. Intrinsics are used like functions and produce assembly language statements that would otherwise be inexpressible in C. The problem is that once you have performed the first optimization step, your C source code is no longer ANSI C compatible. The code proposed within this appli
PDF, 284 Kb, Revision: A, Datei veröffentlicht: May 21, 2001
This document describes how the multi-channel buffered serial port (McBSP) in the Texas Instruments (TI) TMS320C6000? (C6000?) digital signal processor (DSP) family is used to communicate to an ISDN Oriented Modular Interface Revision 2 (IOM-2) bus-compliant device. This document also describes the usage of McBSP registers and sample code to perform the above function.
PDF, 96 Kb, Revision: C, Datei veröffentlicht: Apr 21, 2004
PDF, 99 Kb, Revision: C, Datei veröffentlicht: Jun 30, 2001
The TMS320C6000? (C6000?) Multichannel Buffered Serial Port (McBSP) is designed to interface to a device that supports synchronous Serial Peripheral Interface (SPI). This document describes the hardware interface between the McBSP and a SPI ROM. The McBSP operates as the master in a user-specified clock stop (CLKSTP) mode in order to communicate with the SPI ROM. The McBSP initialization and contr
PDF, 833 Kb, Revision: E, Datei veröffentlicht: Sep 4, 2007
Interfacing external SDRAM to the Texas Instruments TMS320C6000™ digital signal processor (DSP) is simple, compared to previous generations of TI DSPs, because of the advanced external memory interface (EMIF). The EMIF is a glueless interface to a variety of external memory devices.This application report describes the EMIF’s control registers and SDRAM signals along with SDRAM function
PDF, 185 Kb, Revision: D, Datei veröffentlicht: Apr 26, 2004
Texas Instruments TMS320C6000в„ў digital signal processors (DSPs) provide a variety of boot configurations that determine which actions are performed after device reset, to prepare for initialization. The boot process is determined by latching the boot configuration settings at reset.The boot process performed by the DSP is to either load code from an external read-only memory (ROM) space
PDF, 296 Kb, Revision: A, Datei veröffentlicht: Aug 31, 2001
This document describes how to use the mulit-channel buffered serial ports (McBSP) in the Texas Instruments (TI) TMS320C6000в„ў digital signal processor (DSP) as a high-speed data communication port.One McBSP of one C6000в„ў DSP device can be connected to a McBSP on another C6000 DSP device to serve as a high-speed data communication port. Typically, McBSPs of similar device numbers a
PDF, 240 Kb, Revision: A, Datei veröffentlicht: Jul 23, 2001
This document describes how to interface the multichannel buffered serial port (McBSP) in the TMS320C6000? digital signal processor (DSP) to a voice band audio processor (VBAP). The VBAP under discussion is the TI TLV320AC56, 3V, 2.048 MHz audio processor which is a m-law companding device. The interface is also applicable to TI?s TLV320AC57, an A-law companding audio processor.The highly
PDF, 150 Kb, Datei veröffentlicht: Feb 2, 2000
This document describes how to perform data companding with the TMS320C6000(tm)digital signal processors(DSP). Companding refers to the compression and expansion of transfer data before and after transmission, respectively.The multichannel buffered serial port (McBSP) in the TMS320C6000 supports two companding formats: mu-Law and A-Law. Both companding formats are specified in the CCITT G.711
PDF, 313 Kb, Revision: A, Datei veröffentlicht: Sep 11, 2000
This document describes how the multichannel buffered serial ports (McBSP) in the TMS320C6000в„ў digital signal processors (DSP) are used to communicate on a time-division multiplexed (TDM) data highway.TDM provides multiple devices a time slot to perform data transfer. Thus, multiple users operate various channels; however, each user has a set of channel(s) assigned for transmission and re
PDF, 301 Kb, Revision: A, Datei veröffentlicht: Apr 15, 2003
Today?s high-speed interfaces require strict timings and accurate system design. To achieve the necessary timings for a given system, input/output buffer information specification (IBIS) models must be used. These models accurately represent the device drivers under various process conditions. Board characteristics, such as impedance, loading, length, number of nodes, etc., affect how the device d
PDF, 269 Kb, Datei veröffentlicht: Mar 5, 2004
The enhanced DMA (EDMA) is a highly efficient and parallel data transfer engine. To make the best use of its resources, it is necessary to understand the architecture and schedule transfers intelligently. This document details how to summarize, analyze, and schedule system traffic to produce efficient designs. An example audio/video system is presented and analyzed in full. Finally, EDMA performan